• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Perímetro e Área]

[Perímetro e Área]

Mensagempor VINI8 » Sáb Nov 24, 2018 12:54

Seja C o arco da parábola dado pela parte do gráfico da função quadrática y = 16 - x^{2} no semi-plano y \geq 0. Dentre todos os retângulos com um dos lados sobre o eixo x = 0 e dois dos vértices em C, seja R aquele de maior perímetro. A área de R é portanto, numericamente igual a:
A) 4
B) 30
C) 1
D) 34

\begin{center} Solu\c{c}\~ao \end

Imagem
O perímetro de P_{x} é
\\ P_{x} = 2x + 2x + y(-x) + y(x) = \\
P_{x} = 4x + 16 - x^{2} 16 - x^{2} = \\ 
P_{x} = -2x^{2} + 4x + 32
Para 0 \leq x \leq 4. O valor máximo de P_{x} é o máximo da função h(x) = -2x^{2} + 4x +32.
h'(x) = -4x + 4 \Rightarrow  h'(x) = 0 \Rightarrow x = 1. \\
h''(x) = -4 \Rightarrow x =1. é o ponto de máximo.
Assim, o perímetro máximo será atingido em

Para x = 1, temos y = 15 \Rightarrow (1,15) \\
x = -1, temos y = 15 \Rightarrow (-1, 15).
Então, este retângulo tem medida 2 na base e altura igual a 15. Portanto sua área é igual a 30. (LETRA B)
VINI8
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 23, 2018 17:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?