• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Perímetro e Área]

[Perímetro e Área]

Mensagempor VINI8 » Sáb Nov 24, 2018 12:54

Seja C o arco da parábola dado pela parte do gráfico da função quadrática y = 16 - x^{2} no semi-plano y \geq 0. Dentre todos os retângulos com um dos lados sobre o eixo x = 0 e dois dos vértices em C, seja R aquele de maior perímetro. A área de R é portanto, numericamente igual a:
A) 4
B) 30
C) 1
D) 34

\begin{center} Solu\c{c}\~ao \end

Imagem
O perímetro de P_{x} é
\\ P_{x} = 2x + 2x + y(-x) + y(x) = \\
P_{x} = 4x + 16 - x^{2} 16 - x^{2} = \\ 
P_{x} = -2x^{2} + 4x + 32
Para 0 \leq x \leq 4. O valor máximo de P_{x} é o máximo da função h(x) = -2x^{2} + 4x +32.
h'(x) = -4x + 4 \Rightarrow  h'(x) = 0 \Rightarrow x = 1. \\
h''(x) = -4 \Rightarrow x =1. é o ponto de máximo.
Assim, o perímetro máximo será atingido em

Para x = 1, temos y = 15 \Rightarrow (1,15) \\
x = -1, temos y = 15 \Rightarrow (-1, 15).
Então, este retângulo tem medida 2 na base e altura igual a 15. Portanto sua área é igual a 30. (LETRA B)
VINI8
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Nov 23, 2018 17:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.