• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me ajude, por favor, com essa questão de função.

Me ajude, por favor, com essa questão de função.

Mensagempor matemarcos » Qui Out 18, 2018 18:19

Fernando, dono de uma fábrica de reguladores de oxigênio, tem um custo de R$ 150,00 por
unidade produzida. Analisando o mercado, ele percebeu que, se vendesse sua mercadoria
por x reais, conseguiria colocar no mercado 250 - x unidades desse produto, com 0 < x < 250.
Considerando lucro como a diferença entre o valor arrecadado com as vendas e o custo
para fabricação do produto, para que Fernando obtenha lucro máximo, o valor de venda do
regulador de oxigênio deverá ser de
A) R$ 50,00.
B) R$ 100,00.
C) R$ 150,00.
D) R$ 200,00

Buguei completamente.
matemarcos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jan 11, 2018 22:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Informática
Andamento: formado

Re: Me ajude, por favor, com essa questão de função.

Mensagempor Gebe » Qui Out 18, 2018 22:23

Primeiro é essencial organizar os dados fornecidos:
-> Custo de produção (unidade) = 150
-> Valor de venda (unidade) = x
-> Quantidade vendida = 250 - x

O lucro, como mencionado no enunciado é dado por:
-> Lucro = Valor arrecadado - Valor investido
Ou seja:
-> Lucro = (Quantidade vendida)*(Valor de venda un) - (Quantidade vendida)*(Custo de produção un)
-> Lucro = (250 - x)*(x) - (250 - x)*(150)
-> Lucro = 250x - 37500 - x² + 150x
-> Lucro = -x² + 400x - 37500

Como pode ser observado, o lucro é dado por uma função do 2°grau.
Queremos o lucro máximo e, em funções do 2°grau, este ponto tem coordenadas dadas por:
Ymax = -Delta/4a
Xmax = -b/2a

Teremos então:
Ymax = -10000/-4 = 2500
Xmax = -400/-2 = 200

Temos então lucro máximo no valor de R$2500 vendendo cada unidade a R$200. (LETRA D).
Obs.: Neste ponto foram vendidas 50 unidades.
Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: Me ajude, por favor, com essa questão de função.

Mensagempor matemarcos » Sex Out 19, 2018 18:17

Obrigado senhor Gebe. Ainda estou muito longe do que eu almejo matematicamente. :lol:
matemarcos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jan 11, 2018 22:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Informática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}