• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funções e gráficos

funções e gráficos

Mensagempor ezidia51 » Sex Ago 24, 2018 01:21

Alguém poderia me ajudar com estas duas questões?
Anexos
P_20180824_001806.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: funções e gráficos

Mensagempor Gebe » Sex Ago 24, 2018 06:38

1)
É preciso primeiro identificar que essa função não esta simplificada.
Temos uma função do 2°grau sendo dividida por uma do 1°grau e, portanto, a função f(x) será uma reta.
Fazendo a divisão, temos:
(x² - 10x + 21) / (x - 3) = x - 7

Portanto f(x) = x - 7 uma reta.
Agora precisamos saber quanto vale a função f(x) para x = 3.
f(3) = 3 - 7 = -4

Por fim, para que f(3) = Lx tenha mesmo resultado encontrado (-3):
L*3 = -4
L = -4/3

Assim, a resposta seria D.
Obs.: Verifique se há realmente um "x" em "f(3) = Lx".

2)
A reta tangente é horizontal onde a derivada de primeira ordem vale 0, logo:
f '(x) = -6x² - 24x + 30

Igualnado a zero:
-6x² - 24x + 30 = 0
x² + 4x - 5 = 0

f ' (x) = 0 para x = -5 e x = 1
Alternativa B

Qualquer duvida pode mandar msg, bons estudos!
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 153
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: funções e gráficos

Mensagempor ezidia51 » Sex Ago 24, 2018 15:45

Um super muito obrigado pela ajuda!!Só fiquei um pouco confusa nesta simplificação que vc fez aqui no exercício 2
Igualnado a zero:
-6x² - 24x + 30 = 0
x² + 4x - 5 = 0 (como vc fez esta simplificação para achar os pontos -5 e 1?)

f ' (x) = 0 para x = -5 e x = 1
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: funções e gráficos

Mensagempor Gebe » Sex Ago 24, 2018 16:48

A desculpa, pensei que tinha conhecimento em calculo.
Nesta questão não foi feita simplificação, foi feita uma derivação, conceito visto disciplinas de calculo.
A derivada é utilizada, neste caso, para nos fornecer a tangente à f(x) de forma generica, ou seja, achamos (-6x² - 24x + 30) que é o valor da tangente pra todo "x".
No entanto, como o assunto é desconhecido, vou tentar abordar de outra forma, mas recomendo que tu assista no youtube um video sobre derivadas polinomiais ja que é muito util e extremamente simples (MESMO!) de aprender. (https://www.youtube.com/watch?v=YmtFY6TtAXQ)

Explicação sem derivadas.
As tangentes à uma função são horizontais normalmente nos seus pontos de maximo e minimo (locais), ou seja, no ponto onde a função faz a troca Crescente/Decrescente ou Decrescente/Crescente.
Veja, por exemplo a função seno, onde os pontos azuis representam os maximos e minimos locais e, portanto, pontos de tangente horizontal.
sen.png
sen.png (8.85 KiB) Exibido 1015 vezes


Funções de terceiro grau tem um ponto de maximo e outro de minimo, logo precisamos achar estes pontos. Infelizmente funções de terceiro grau não tem uma expressão que dite estes pontos como temos para funções de segundo grau, logo devemos acha-los por tentativa.
Meu conselho, neste caso, seria substituir na função os pontos fornecidos nas alternativas e verificar nos pontos imediatamente anteriores e posteriores se há a mudança de cresc/decresc ou decresc/cresc.

ex.: utiliando os pontos -1 e 5
f(-1) = -30 --> observar os pontos -2 e 0 (anterior e posterior) --> f(-2) = -82 , f(0) = 10
Podemos ver que não ha a mudança, pois de f(-2) para (-1) é cresc e de f(-1) para f(0) é cresc também.

f(5) = -390 --> observar os pontos 4 e 6 (anterior e posterior) --> f(4) = -190 , f(6) = -674
Podemos ver que não ha a mudança, pois de f(-2) para (-1) é decresc e de f(-1) para f(0) é decresc também.

Espero ter ajudado, qualquer coisa mande msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 153
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: funções e gráficos

Mensagempor ezidia51 » Sex Ago 24, 2018 18:58

ah agora compreendi melhor.Muito muito obrigado.Vou ver o video que vc me recomendou!!Você me ajudou bastante!!!Um super muito obrigado!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?



cron