• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dominio função inversa

dominio função inversa

Mensagempor ezidia51 » Qua Ago 22, 2018 00:25

Alguém pode me ajudar nesta questão?Eu marquei a letra b mas não sei se está correta
Anexos
P_20180821_204232.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: dominio função inversa

Mensagempor Gebe » Qua Ago 22, 2018 03:20

Ha pelo menos 2 formas basicas de se fazer esta questão.
1ª Achar a função inversa de f(x) e determinar seu dominio.
2ª O dominio da função inversa de f(x) é igual a imagem de f(x) (e vice-versa), logo se soubermos a imagem de f(x) temos o dominio da sua inversa.

Achar a imagem pode ser meio complicado muitas vezes, logo prefiro fazer pela primeira forma.
Nesta questão, no entanto, não é dificil de observar que a imagem de f(x) (a faixa de valores que 'y' pode assumir) seja os Reais (letra A)
Abaixo a resolução segunda a primeira forma citada:

Achar a f(x) inversa: Troca-se 'x' por 'y' e isola-se 'y' [Obs.: Vou utilizar a notação Raiz() para representar a raiz quadrada]

y = Raiz(x+6) - 2 --> troca-se 'x' por 'y'

x = Raiz(y+6) - 2 --> isola-se 'y'

x + 2 = Raiz(y+6)

(x + 2)² = y + 6

(x + 2)² - 6 = y

y = x² + 4x -2

Agora só precisamos do dominio. Como podemos ver na função 'x' pode assumir qualquer valor Real.
Resposta: letra A.
Qualquer duvida pode mandar msg. Bons estudos!
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: dominio função inversa

Mensagempor ezidia51 » Qua Ago 22, 2018 15:28

Um super muito obrigado!!!Essa explicação me ajudou bastante pois estava com muita dúvida mas agora ficou tudo bem mais esclarecido.Muito muito obrigado.
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: dominio função inversa

Mensagempor Gebe » Qua Ago 22, 2018 23:24

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59