• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolv.-funçoes

exercicio resolv.-funçoes

Mensagempor adauto martins » Ter Jul 31, 2018 20:41

seja f:\Re \rightarrow \Re,definida por:
f(x+y)=f(x).f(y),mostre que:
a) f,admite funçao inversa.
b)f(x)\succ 0

f(0)=1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.-funçoes

Mensagempor adauto martins » Ter Jul 31, 2018 21:14

soluçao:
mostrar que uma funçao admite funçao inversa,é mostrar que f é bijetiva.
ou seja injetiva e sobrejetiva.
f é injetiva,de fato,pois:
sejam f(x),f(y) \in im(f),tais que f(x)=f(y)...entao:
f(x)=f((x-y)+y)=f(0+y)\Rightarrow x-y=0\Rightarrow x=y...
f é sobrejetiva,de fato,pois:
dado y \in IM(f),seja x\in DOM(f),tal que:
x=x+a-a\Rightarrow y=f(x+(a-a))=f(x+0)=f(x)
b)
f(x)=f((x/2)+(x/2))=f(x/2).f(x/2)\succeq 0...
se f(x)=0,sera para todo x\in\Re,logo:
f(x)\succ 0...
f(0)=f(0+0)=f(0).f(0)\Rightarrow f(0).(1-f(0))=0,como f é positiva,teremos:
1-f(0)=0\Rightarrow f(0)=1...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}