• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido-funçoes

exerc.resolvido-funçoes

Mensagempor adauto martins » Qui Jul 12, 2018 12:37

mostre que toda funçao impar admite funçao inversa.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido-funçoes

Mensagempor adauto martins » Qui Jul 12, 2018 12:47

para q. uma funçao admita funçao inversa,ou seja inversivel é necessario e suficiente q. seja uma funçao bijetiva.
ou seja,seja injetiva e sobrejetiva.seja f,funcao impar;por definiçao f(x)=-f(x),p.qquer x do dominio.
f é injetiva,de fato,pois:
f(x)=-f(x),por ser impar,teremos:
f(x)=-f(x)=f(-(-x))\Rightarrow x=-(-x)...
f é sobrejetiva,de fato,pois:
\forall y\in IM(f),\exists x\in DOM(f) tal que:
x=-(-x)\Rightarrow y=f(x)=f(-(x)),sendo f impar teremos:
y=f(x)=f(-(x))=-f(-x)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido-funçoes

Mensagempor adauto martins » Qui Jul 12, 2018 12:55

para q. uma funçao admita funçao inversa,ou seja inversivel é necessario e suficiente q. seja uma funçao bijetiva.
ou seja,seja injetiva e sobrejetiva.seja f,funcao impar;por definiçao f(x)=-f(x),p.qquer x do dominio.
f é injetiva,de fato,pois:
f(x)=-f(x),por ser impar,teremos:
f(x)=-f(x)=f(-(-x))\Rightarrow x=-(-x)...
f é sobrejetiva,de fato,pois:
\forall y\in IM(f),\exists x\in DOM(f)tal que:
x=-(-x)\Rightarrow y=f(x)=f(-(-x)),sendo f impar teremos:
y=f(x)=f(-(-x))=-f(-x)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.