• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido-funçoes

exerc.resolvido-funçoes

Mensagempor adauto martins » Qui Jul 12, 2018 12:37

mostre que toda funçao impar admite funçao inversa.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido-funçoes

Mensagempor adauto martins » Qui Jul 12, 2018 12:47

para q. uma funçao admita funçao inversa,ou seja inversivel é necessario e suficiente q. seja uma funçao bijetiva.
ou seja,seja injetiva e sobrejetiva.seja f,funcao impar;por definiçao f(x)=-f(x),p.qquer x do dominio.
f é injetiva,de fato,pois:
f(x)=-f(x),por ser impar,teremos:
f(x)=-f(x)=f(-(-x))\Rightarrow x=-(-x)...
f é sobrejetiva,de fato,pois:
\forall y\in IM(f),\exists x\in DOM(f) tal que:
x=-(-x)\Rightarrow y=f(x)=f(-(x)),sendo f impar teremos:
y=f(x)=f(-(x))=-f(-x)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido-funçoes

Mensagempor adauto martins » Qui Jul 12, 2018 12:55

para q. uma funçao admita funçao inversa,ou seja inversivel é necessario e suficiente q. seja uma funçao bijetiva.
ou seja,seja injetiva e sobrejetiva.seja f,funcao impar;por definiçao f(x)=-f(x),p.qquer x do dominio.
f é injetiva,de fato,pois:
f(x)=-f(x),por ser impar,teremos:
f(x)=-f(x)=f(-(-x))\Rightarrow x=-(-x)...
f é sobrejetiva,de fato,pois:
\forall y\in IM(f),\exists x\in DOM(f)tal que:
x=-(-x)\Rightarrow y=f(x)=f(-(-x)),sendo f impar teremos:
y=f(x)=f(-(-x))=-f(-x)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?