• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolv.funçoes

exercicio resolv.funçoes

Mensagempor adauto martins » Qua Jun 13, 2018 13:16

seja f:\Re\rightarrow\Re,definida por:
f(x+y)=f(x.y)...mostre que:
a) f nao admite funçao inversa.
b)x,y sao necessariamente numeros irracionais.
soluçao:
a)
seja z=x+y,logo:
f(z)=f(x+y)=f(x.y)=f((-x).(-y))=f(-(x+y))=f(-z)...
portanto f é uma funçao par,e nao é injetiva(mostre isso),logo nao admite funçao inversa.
b)
seja x=y=2\Rightarrow f(2+2)=f(2.2),2\in N...
seja x=1,y=-(1/2)\Rightarrow f(1+(-(1/2))=f(1.(-(1/2))...1\in N,-(1/2)\in Q...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Qui Jun 14, 2018 13:21

caros colegas do site,
a letra b) que fiz esta incompleta,e com erros.farei uma pequena esplanaçao e logo,qudo puder a resolverei por completo.
pela letra a)sendo f nao injetiva,e portanto nao admite inversa nao podemos ter:
x+y=x.y,pois teriamos q. ter:
({f}^{-1}of)(x+y)=({f}^{-1}of)(x.y)\Rightarrow x+y=x.y......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Sex Jun 15, 2018 17:03

voltemos a explanaçao,ao tema anterior.
como visto antes,nao podemos ter x+y=x.y,pois invalidaremos a condiçao de nao existencia da funçao inversa.
logo,necessariamente teremos q. ter x+y\neq x.y.entao busquemos um t\in \Re,t\neq 1,t\neq -1(pq t\neq -1?),tal que x+y=t.(x.y)...logo:
x+y=t.(x.y)\Rightarrow y=t.(x.y)-x=x.(t.y-1)\Rightarrow (y/x)=t.y-1=k,k\in Z....
y=(K+1)/t=((k/t)+(1/t))\Rightarrow,para q. y\in Z,teriamos q. ter t=1,ao qual invalidaria a nossa condiçao de nao existencia da inversa...logo, y nao pode ser inteiro...
na mesma deixa,vamos supor que:
y=(k+1)/t=(p/q),mdc(p,q)=1...\Rightarrow p=q((k/t)+(1/t))
para q. p\in Z,t teria q. ser igual a um,o q. como visto anteriormente contradiz a condiçao de nao inversa...logo y nao pode ser racional...modo analogo para x...entao x,y teem q. ser irracionais...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59