• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolv.funçoes

exercicio resolv.funçoes

Mensagempor adauto martins » Qua Jun 13, 2018 13:16

seja f:\Re\rightarrow\Re,definida por:
f(x+y)=f(x.y)...mostre que:
a) f nao admite funçao inversa.
b)x,y sao necessariamente numeros irracionais.
soluçao:
a)
seja z=x+y,logo:
f(z)=f(x+y)=f(x.y)=f((-x).(-y))=f(-(x+y))=f(-z)...
portanto f é uma funçao par,e nao é injetiva(mostre isso),logo nao admite funçao inversa.
b)
seja x=y=2\Rightarrow f(2+2)=f(2.2),2\in N...
seja x=1,y=-(1/2)\Rightarrow f(1+(-(1/2))=f(1.(-(1/2))...1\in N,-(1/2)\in Q...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Qui Jun 14, 2018 13:21

caros colegas do site,
a letra b) que fiz esta incompleta,e com erros.farei uma pequena esplanaçao e logo,qudo puder a resolverei por completo.
pela letra a)sendo f nao injetiva,e portanto nao admite inversa nao podemos ter:
x+y=x.y,pois teriamos q. ter:
({f}^{-1}of)(x+y)=({f}^{-1}of)(x.y)\Rightarrow x+y=x.y......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Sex Jun 15, 2018 17:03

voltemos a explanaçao,ao tema anterior.
como visto antes,nao podemos ter x+y=x.y,pois invalidaremos a condiçao de nao existencia da funçao inversa.
logo,necessariamente teremos q. ter x+y\neq x.y.entao busquemos um t\in \Re,t\neq 1,t\neq -1(pq t\neq -1?),tal que x+y=t.(x.y)...logo:
x+y=t.(x.y)\Rightarrow y=t.(x.y)-x=x.(t.y-1)\Rightarrow (y/x)=t.y-1=k,k\in Z....
y=(K+1)/t=((k/t)+(1/t))\Rightarrow,para q. y\in Z,teriamos q. ter t=1,ao qual invalidaria a nossa condiçao de nao existencia da inversa...logo, y nao pode ser inteiro...
na mesma deixa,vamos supor que:
y=(k+1)/t=(p/q),mdc(p,q)=1...\Rightarrow p=q((k/t)+(1/t))
para q. p\in Z,t teria q. ser igual a um,o q. como visto anteriormente contradiz a condiçao de nao inversa...logo y nao pode ser racional...modo analogo para x...entao x,y teem q. ser irracionais...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.