• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor Andersonlustosa » Dom Abr 22, 2018 22:33

Seja a função f:R\rightarrow Z ,tal que cada x\in R ,associando a imagem f\left(x \right)=m , onde m\in Z com a propriedade que m \leq x < m+1 . Se a=1,9 , b=2,6 e c= -1,2 , então o valor de f\left(3a \right) + f\left(2b \right) + f\left(c \right) é:

Resposta: 8
Andersonlustosa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 22, 2018 22:17
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecanica
Andamento: formado

Re: Função

Mensagempor DanielFerreira » Qui Mai 31, 2018 12:18

Olá Anderson!

Inicialmente, temos:

\\ \mathsf{f(3a) + f(2b) + f(c) =} \\\\ \mathsf{f(3 \cdot 1,9) + f(2 \cdot 2,6) + f(- 1,2) =} \\\\ \mathsf{f(5,7) + f(5,2) + f(- 1,2) =}


Daí, como \mathsf{f(x) = m} onde \mathsf{m \in \mathbb{Z}}, teremos:


\\ \mathsf{f(5,7) = m_1} \\\\ \mathsf{\Rightarrow m_1 \leq 5,7 < m_1 + 1} \\\\ \mathsf{\Rightarrow 5 \leq 5,7 < 5 + 1} \\\\ \Rightarrow \boxed{\mathsf{m_1 = 5}}

De modo análogo,

\\ \mathsf{f(5,2) = m_2} \\\\ \mathsf{\Rightarrow m_2 \leq 5,2 < m_2 + 1} \\\\ \mathsf{\Rightarrow 5 \leq 5,2 < 5 + 1} \\\\ \Rightarrow \boxed{\mathsf{m_2 = 5}}

Por conseguinte,

\\ \mathsf{f(- 1,2) = m_3} \\\\ \mathsf{\Rightarrow m_3 \leq - 1,2 < m_3 + 1} \\\\ \mathsf{\Rightarrow - 2 \leq - 1,2 < - 1} \\\\ \Rightarrow \boxed{\mathsf{m_3 = - 2}}


Logo,

\\ \mathsf{m = m_1 + m_2 + m_3} \\\\ \mathsf{m = 5 + 5 + (- 2)} \\\\ \mathsf{m = 10 - 2} \\\\ \boxed{\boxed{\mathsf{m = 8}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)