• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor Andersonlustosa » Dom Abr 22, 2018 22:33

Seja a função f:R\rightarrow Z ,tal que cada x\in R ,associando a imagem f\left(x \right)=m , onde m\in Z com a propriedade que m \leq x < m+1 . Se a=1,9 , b=2,6 e c= -1,2 , então o valor de f\left(3a \right) + f\left(2b \right) + f\left(c \right) é:

Resposta: 8
Andersonlustosa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 22, 2018 22:17
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecanica
Andamento: formado

Re: Função

Mensagempor DanielFerreira » Qui Mai 31, 2018 12:18

Olá Anderson!

Inicialmente, temos:

\\ \mathsf{f(3a) + f(2b) + f(c) =} \\\\ \mathsf{f(3 \cdot 1,9) + f(2 \cdot 2,6) + f(- 1,2) =} \\\\ \mathsf{f(5,7) + f(5,2) + f(- 1,2) =}


Daí, como \mathsf{f(x) = m} onde \mathsf{m \in \mathbb{Z}}, teremos:


\\ \mathsf{f(5,7) = m_1} \\\\ \mathsf{\Rightarrow m_1 \leq 5,7 < m_1 + 1} \\\\ \mathsf{\Rightarrow 5 \leq 5,7 < 5 + 1} \\\\ \Rightarrow \boxed{\mathsf{m_1 = 5}}

De modo análogo,

\\ \mathsf{f(5,2) = m_2} \\\\ \mathsf{\Rightarrow m_2 \leq 5,2 < m_2 + 1} \\\\ \mathsf{\Rightarrow 5 \leq 5,2 < 5 + 1} \\\\ \Rightarrow \boxed{\mathsf{m_2 = 5}}

Por conseguinte,

\\ \mathsf{f(- 1,2) = m_3} \\\\ \mathsf{\Rightarrow m_3 \leq - 1,2 < m_3 + 1} \\\\ \mathsf{\Rightarrow - 2 \leq - 1,2 < - 1} \\\\ \Rightarrow \boxed{\mathsf{m_3 = - 2}}


Logo,

\\ \mathsf{m = m_1 + m_2 + m_3} \\\\ \mathsf{m = 5 + 5 + (- 2)} \\\\ \mathsf{m = 10 - 2} \\\\ \boxed{\boxed{\mathsf{m = 8}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1701
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}