• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor Andersonlustosa » Dom Abr 22, 2018 22:33

Seja a função f:R\rightarrow Z ,tal que cada x\in R ,associando a imagem f\left(x \right)=m , onde m\in Z com a propriedade que m \leq x < m+1 . Se a=1,9 , b=2,6 e c= -1,2 , então o valor de f\left(3a \right) + f\left(2b \right) + f\left(c \right) é:

Resposta: 8
Andersonlustosa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Abr 22, 2018 22:17
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecanica
Andamento: formado

Re: Função

Mensagempor DanielFerreira » Qui Mai 31, 2018 12:18

Olá Anderson!

Inicialmente, temos:

\\ \mathsf{f(3a) + f(2b) + f(c) =} \\\\ \mathsf{f(3 \cdot 1,9) + f(2 \cdot 2,6) + f(- 1,2) =} \\\\ \mathsf{f(5,7) + f(5,2) + f(- 1,2) =}


Daí, como \mathsf{f(x) = m} onde \mathsf{m \in \mathbb{Z}}, teremos:


\\ \mathsf{f(5,7) = m_1} \\\\ \mathsf{\Rightarrow m_1 \leq 5,7 < m_1 + 1} \\\\ \mathsf{\Rightarrow 5 \leq 5,7 < 5 + 1} \\\\ \Rightarrow \boxed{\mathsf{m_1 = 5}}

De modo análogo,

\\ \mathsf{f(5,2) = m_2} \\\\ \mathsf{\Rightarrow m_2 \leq 5,2 < m_2 + 1} \\\\ \mathsf{\Rightarrow 5 \leq 5,2 < 5 + 1} \\\\ \Rightarrow \boxed{\mathsf{m_2 = 5}}

Por conseguinte,

\\ \mathsf{f(- 1,2) = m_3} \\\\ \mathsf{\Rightarrow m_3 \leq - 1,2 < m_3 + 1} \\\\ \mathsf{\Rightarrow - 2 \leq - 1,2 < - 1} \\\\ \Rightarrow \boxed{\mathsf{m_3 = - 2}}


Logo,

\\ \mathsf{m = m_1 + m_2 + m_3} \\\\ \mathsf{m = 5 + 5 + (- 2)} \\\\ \mathsf{m = 10 - 2} \\\\ \boxed{\boxed{\mathsf{m = 8}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}