• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funções com cálculo de coeficientes

funções com cálculo de coeficientes

Mensagempor ezidia51 » Qua Mar 28, 2018 22:54

Fiz estes cálculos mas não sei se estão certos

A funçãof(x)=a{x}^{2}+bx+c tem vértice no ponto (2,6) e uma raiz no ponto x=5. Determine a expressão de f (ou, em outras palavras, determine os valores dos coeficientes a,b e c .
ponto 2 =a{2}^{2}+b.2+c=0
ponto 6=a{6}^{2}=b.6+c=0

ponto 2 =4a+2b+c=0 \frac{-2+-\sqrt[2]{4.4.c}}{2.4}=\frac{-2+-\sqrt[2]{16c}}{8}=\frac{-2+4c}}{8}=c=1 e c=-1
ponto 6=36a+6b+c=0 \frac{-(+6)+-\sqrt[2]{4.36.c}}{2.36}=\frac{-6+-\sqrt[2]{144c}}{72}=\frac{-6+-\sqrt[2]{{2}^{2}.{2}^{2}.{3}^{2}c}}{72}=\frac{-6+-2.2.3\sqrt[2]{c}}{72}=\frac{-6+-12\sqrt[2]{c}}{72}=\frac{6\sqrt[2]{c}}{72}=c=0,08^{\frac{1}{2}} ou c=c=-0,08^{\frac{1}{2}}




Sabendo-se que {x}^{2}-6x+m>0 \forall\in\Re, determine m
\frac{6+-\sqrt[2]{4m}}{2}=\frac{6+-2m}}{2}=\frac{6+2m}{2}=3+2m=m=\frac{-3}{2} ou\frac{6-2m}{2}=3-2m=m=\frac{3}{2}
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: funções com cálculo de coeficientes

Mensagempor Gebe » Qui Mar 29, 2018 00:42

Ok, antes da resolução em si, algo MUITO IMPORTANTE que talvez tu tenha deixado passar é o conceito de par ordenado. Quando a questão diz (2,6), ela está te dando um par ordenado que pode ser um vertice ou um ponto qualquer da função. O par ordenado é composto por duas coordenadas, X e Y ( ou X e F(X) ), sendo representada na forma (X,Y). Este par nos diz que, para o dado X, a função terá valor F(X) = Y, ou seja, se substituirmos o valor de X por 2, a função terá como resultado F(2) = 6.

Outro conceito importante que tambem esta presente na questão é a ideia de raiz da função. Raiz da função é o numero que quando atribuido a X zera a função, ou seja, se utilizarmos a ideia de par ordenado seria um (X,0) ou F(X) = 0.

Agora para a questão.
Lembre-se que temos uma formula para o vertice da função de 2° grau: Y=-\frac{\Delta}{4a}\;,\:\,X=-\frac{b}{2a}
Utilizaremos esta formula mais abaixo.

Com o par (2,6), temos: 4²a + 2b + c = 6

Com a raiz 5, temos: 5²a + 5b + c = 0

Perceba que temos então 2 equações e 3 incognitas, ou seja, ainda precisamos de mais uma equação para poder resolver o sistema de equações. Vamos então utilizar a formula para a coordenada X do vertice.

x=-\frac{b}{2a}\\
\\
2 = -\frac{b}{2a}\\
\\
-b = 2*2a\\
\\
b = -4a

Perceba que agora podemos substituir "b" nas equações por -4a :
\\
4a+2b+c=6\\
25a+5b+c=0\\
\\
4a+2*(-4a)+c=6\\
25a+5*(-4a)+c=0\\
\\
4a-8a+c=6\\
25a-20a+c=0\\
\\
-4a+c=6\\
5a+c=0\\
\\

Agora precisamos apenas resolver o sistema de 2 equaçoes com 2 incognitas. Podemos fazer isso, por exemplo, subtraindo a equação 1 da equação 2:
\\
-4a+c=6\\
5a+c=0\\
\\
(5a+c)-(-4a+c)=0-6\\
\\
9a = -6\\
\\
a = -\frac{6}{9}\\
\\
a=-\frac{2}{3}

Com o valor do "a", basta substituir nas outras equações para achar "b" e "c"
\\
5a+c=0\\
\\
5*(-\frac{2}{3})+c=0\\
\\
c = \frac{10}{3}\\
\\

\\
b=-4a\\
\\
b=-4*(-\frac{2}{3})\\
\\
b=\frac{8}{3}

Portanto f(x)=-\frac{2}{3}x^2+\frac{8}{3}x+\frac{10}{3}

A outra questão vou responder em outra msg assim que puder.
Espero ter ajudado, qualquer duvida mande uma msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 134
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: funções com cálculo de coeficientes

Mensagempor Gebe » Qui Mar 29, 2018 01:21

A segunda questão é um pouco mais simples. Para que a função seja sempre maior que 0, todo o grafico da função (toda a parabola) deve estar acima do eixo X das abscissas (eixo horizontal) no plano cartesiano, ou seja, para todo x que substituirmos na função, o resultado será sempre maior que 0.

Como o "a" da função é positivo (vale 1) sabemos que sua concavidade é voltada para cima (forma de sorriso :-D ) e, portanto, o seu vertice será o ponto mais baixo que ela atinge.
Logo podemos utilizar a formula para a coordenada Y do vertice Y=-\frac{\Delta}{4a} para que Y seja sempre maior que 0.

\\
Y=-\frac{\Delta}{4a}\\
\\
Y>0\\
\\
-\frac{\Delta}{4a}>0\\
\\
-\frac{(-6)^2-4*1*m}{4*1}>0\\
\\
-\frac{36-4m}{4}>0\\
\\
-36+4m>0*4\\
\\
4m>36\\
\\
m>\frac{36}{4}\\
\\
m>9

Espero ter ajudado, qualquer duvida deixe msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 134
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: funções com cálculo de coeficientes

Mensagempor ezidia51 » Qui Mar 29, 2018 17:50

Um super muito obrigado!!!Isso me ajudou muito!!! :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?