• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funções simples

funções simples

Mensagempor ezidia51 » Qua Mar 28, 2018 22:08

Considere a função de \Re em\Re ; dada porf(x)=({m}^{2}-4)x+12 Analise o crescimento/ decrescimento de em função do parâmetro real .
resolvi assim mas acho que este cálculo não está correto.
{m}^{2}-4x+12 =\frac{-(-4)+-\sqrt[2]{4.1.12}}{2.1}=\frac{-(-4)+-\sqrt[2]{48}}{2}=\frac{4+-\sqrt[2]{48}}{2}
\frac{4+-\sqrt[2]{{2}^{4}.3}}{2}=\frac{4+-2\sqrt[2]{3}}{2}=\frac{6\sqrt[2]{3}}{2}=3\sqrt[2]{3}

e\frac{2\sqrt[2]{3}}{2}=\sqrt[2]{3}

haverá crescimento da função quando m>0 e decrescimento quando m<0
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: funções simples

Mensagempor Gebe » Qua Mar 28, 2018 23:45

Pelo que deu pra perceber pelos teus calculos, tu tentou utilizar Bhaskara para resolver a questão, no entanto a função que estamos avaliando não é de 2° grau. Observe que não temos termos com x², apenas x¹. O expoente 2 que aparece na função esta ligado a "m", porem "m" não é nossa variavel (x), é um parametro.

Observndo a função notamos então que ela se trata de uma função de 1°grau (uma reta). Uma função de 1° grau (ou linear) pode ser crescente, decrescente ou constante. Em funções de 1°grau as tres possibilidades dependem do termo que multiplica "x¹" que, neste caso, é (m²-4). A descrição das tres possibilidades são as seguintes:

- Crescente: O termo que multiplica "x" é positivo.
- Decrescente: O termo que multiplica "x" é negativo.
- Constante: O termo que multiplica "x" vale 0 (zero).

Sendo assim, podemos avaliar a função:

- Para que seja crescente:
m^2-4>0\\
\\
m^2>4\\
\\
m>\sqrt[2]{4}\\
\\
\left|m \right|>2\\
\\
ou seja "m" pode ser tanto maior que +2 quanto menor que -2. (ex.: -2.5 , -3 , -7 , +2.2 , +3.7 , +11)

- Para que seja Decrescente:
m^2-4<0\\
\\
m^2<4\\
\\
m<\sqrt[2]{4}\\
\\
\left|m \right|<2\\
\\
ou seja, "m" deve ser maior que -2 e, ao mesmo tempo, menor que +2. (ex: -1.5 , -1 , 0 , 1 , 1.5)

Para ser constante:
m^2-4=0\\
\\
m^2=4\\
\\
m=\sqrt[2]{4}\\
\\
\left|m \right|=2\\
\\
ou seja, pode ser -2 ou +2.

Estas são as respostas, observe que não é simplesmente um numero, devemos apresentar as condições de "m" (o parametro) para que cada situação aconteça.
Espero ter ajudado, em caso de duvidas mande um amag que eu tento explicar melhor. Bons estudos
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59