• Anúncio Global
    Respostas
    Exibições
    Última mensagem

zeros reais de funções reais

zeros reais de funções reais

Mensagempor bebelo32 » Dom Mar 11, 2018 21:12

1) Localize graficamente as raises das equações a seguir:

a) {2}^{x} - 3x = 0
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: zeros reais de funções reais

Mensagempor adauto martins » Seg Abr 23, 2018 17:51

seja y={2}^{x}-3x,temos que:
y'=ln2({2}^{x})-3

y''={ln2}^{2}.{2}^{x}\Rightarrow y''\succ 0,ou seja (pode existir ou nao ponto de minimo)
fazendo:
x=0\Rightarrow y=1\succ 0
y'=0\Rightarrow x=-(ln(ln2)/2)\simeq 1\Rightarrow y=-1\prec 0,ou seja
y tem ponto de minimo e concavidade p/cima(y''\succ 0) e valores de
(0,1),(1,-1)...como y'(\sim1-)\prec 0,y'(\sim1+)\succ 0(verifique esse fato),temos que
ycruza o eixo das abisissas duas vezes,logo duas raizes...
use o mesmo metodo e verifique que:
y={2}^{x}-{x}^{2} possui tres raizes...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: zeros reais de funções reais

Mensagempor adauto martins » Seg Abr 23, 2018 17:52

adauto martins escreveu:seja y={2}^{x}-3x,temos que:
y'=ln2({2}^{x})-3

y''={ln2}^{2}.{2}^{x}\Rightarrow y''\succ 0,ou seja (pode existir ou nao ponto de minimo)
fazendo:
x=0\Rightarrow y=1\succ 0
y'=0\Rightarrow x=-(ln(ln2)/2)\simeq 1\Rightarrow y=-1\prec 0,ou seja
y tem ponto de minimo e concavidade p/cima(y''\succ 0) e valores de
(0,1),(1,-1)...como y'(\sim1-)\prec 0,y'(\sim1+)\succ 0(verifique esse fato),temos que
ycruza o eixo das abisissas duas vezes,logo duas raizes...
use o mesmo metodo e verifique que:
y={2}^{x}-{x}^{2} possui tres raizes...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron