• Anúncio Global
    Respostas
    Exibições
    Última mensagem

zeros reais de funções reais

zeros reais de funções reais

Mensagempor bebelo32 » Dom Mar 11, 2018 21:12

1) Localize graficamente as raises das equações a seguir:

a) {2}^{x} - 3x = 0
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: zeros reais de funções reais

Mensagempor adauto martins » Seg Abr 23, 2018 17:51

seja y={2}^{x}-3x,temos que:
y'=ln2({2}^{x})-3

y''={ln2}^{2}.{2}^{x}\Rightarrow y''\succ 0,ou seja (pode existir ou nao ponto de minimo)
fazendo:
x=0\Rightarrow y=1\succ 0
y'=0\Rightarrow x=-(ln(ln2)/2)\simeq 1\Rightarrow y=-1\prec 0,ou seja
y tem ponto de minimo e concavidade p/cima(y''\succ 0) e valores de
(0,1),(1,-1)...como y'(\sim1-)\prec 0,y'(\sim1+)\succ 0(verifique esse fato),temos que
ycruza o eixo das abisissas duas vezes,logo duas raizes...
use o mesmo metodo e verifique que:
y={2}^{x}-{x}^{2} possui tres raizes...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 692
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: zeros reais de funções reais

Mensagempor adauto martins » Seg Abr 23, 2018 17:52

adauto martins escreveu:seja y={2}^{x}-3x,temos que:
y'=ln2({2}^{x})-3

y''={ln2}^{2}.{2}^{x}\Rightarrow y''\succ 0,ou seja (pode existir ou nao ponto de minimo)
fazendo:
x=0\Rightarrow y=1\succ 0
y'=0\Rightarrow x=-(ln(ln2)/2)\simeq 1\Rightarrow y=-1\prec 0,ou seja
y tem ponto de minimo e concavidade p/cima(y''\succ 0) e valores de
(0,1),(1,-1)...como y'(\sim1-)\prec 0,y'(\sim1+)\succ 0(verifique esse fato),temos que
ycruza o eixo das abisissas duas vezes,logo duas raizes...
use o mesmo metodo e verifique que:
y={2}^{x}-{x}^{2} possui tres raizes...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 692
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.