• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função de 1º grau

Função de 1º grau

Mensagempor xaxace » Qui Nov 16, 2017 22:43

Alguém pode me dar uma luz com essa questão? Não entendi o que ela realmente quer.

A contribuição cobrada por determinada empresa de previdência privada para o trabalhador que ganha de 15 a 20 salários mínimos é dada pela função: f(x) = 0,10 x. Utilizando o salário mínimo de R$ 350,00 construa uma tabela com três pontos onde “x” varie de 15 a 18 salários mínimos e represente a situação graficamente.
xaxace
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jun 03, 2014 20:12
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Especialização em Java
Andamento: cursando

Re: Função de 1º grau

Mensagempor DanielFerreira » Qui Jan 25, 2018 12:04

Olá!

xaxace escreveu:Alguém pode me dar uma luz com essa questão? Não entendi o que ela realmente quer.

A contribuição cobrada por determinada empresa de previdência privada para o trabalhador que ganha de 15 a 20 salários mínimos é dada pela função: f(x) = 0,10 x. Utilizando o salário mínimo de R$ 350,00 construa uma tabela com três pontos onde “x” varie de 15 a 18 salários mínimos e represente a situação graficamente.


Farei apenas UM ponto e o restante é com você!

Vou considerar x = 15 salários, afinal, está compreendido entre 15 e 18. Ademais, de acordo com o enunciado, sabemos que o salário a ser considerado é de R$ 350,00; assim, temos que, 15 salários correspondem a:

15 \times 350 = 5.250,00

Segue,

\\ f(x) = 0,10x \\\\ f(x) = 0,10 \cdot 5250 \\\\ f(x) = 525,00

Bom! até aqui devemos marcar no plano cartesiano o ponto (15, 525). Agora é com você... Podes considerar x = 16, x = 17 ou x = 18; por conseguinte, basta determinar quanto isto vale em reais e depois encontrar f(x) e representar no gráfico.

Espero ter ajudado!

Qualquer dúvida, comente!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}