• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Exponencial

Função Exponencial

Mensagempor Rayane01 » Qua Abr 12, 2017 12:10

Sob certas condições de cultura, um fungo cresce exponencialmente de forma que a quantidade presente em um instante "t" dobra a cada 1,5 horas. Nestas condições, se colocarmos uma quantidade q0 deste fungo em um meio de cultura, a quantidade q(t) existente do fungo, decorridas t horas com tE[0,"infinito"), pode ser calculada por qual função?

A minha principal dúvida é: onde colocar o 1,5?
Rayane01
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Dez 21, 2016 18:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Exponencial

Mensagempor Cleyson007 » Qua Abr 12, 2017 22:56

Numa exponencial onde algo dobra é válida a equação:

N(t) = N(0).2^(k.t) ----> Esse "2" que aparece deve-se ao dobro!

Percebe-se que ao comparar com q(t) = qo.2^(k.t), é possível enxergar um expoente 4 (ora, 2² = 4).

q(t) = {[4^(1/3)]^t}*qo

q(t) = ([(2^2)^(1/3)]^t}*qo

q(t) = [2^(2t/3)]*qo

Fazendo o teste para t = 1,5h, têm-se:

q(1,5) = qo.2^(2,1,5/3) ----> q(1,5) = 2*qo

Espero que tenha lhe ajudado.

Qualquer dúvida estou a disposição.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}