• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FUNÇOES] - com fração

[FUNÇOES] - com fração

Mensagempor matheus portella » Dom Mar 19, 2017 01:59

Boa noite,

Não estou consiguindo enterder como desenvolver a seguinte questão

se f(x)= x^2-4
______
x-1


f(1/t)



alguem pode me ajudar? gostaria não de apenas a solução, mas um desenrolar instrutivo da solução. oque devo estudar, além de funçoes, pra poder desenvolver essa função?
não consigo desenvolver já após substituir o 1/t pelo x.
matheus portella
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 19, 2017 01:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: [FUNÇOES] - com fração

Mensagempor DanielFerreira » Sáb Abr 01, 2017 19:43

Olá Matheus!

Do enunciado, temos que:

\mathsf{f\left ( \frac{1}{t} \right ) = \frac{\frac{1}{t^2} - 4}{\frac{1}{t} - 1}}

Pelo que entendi, fizeste até aqui (acima).

Por conseguinte, podemos aplicar MMC...

\\ \mathsf{f\left ( \frac{1}{t} \right ) = \frac{\frac{1}{t^2} - 4}{\frac{1}{t} - 1}} \\\\\\ \mathsf{f\left ( \frac{1}{t} \right ) = \frac{\frac{1}{t^2/1} - \frac{4}{1/t^2}}{\frac{1}{t/1} - \frac{1}{1/t}}} \\\\\\ \mathsf{f\left ( \frac{1}{t} \right ) = \frac{\frac{1 - 4t^2}{t^2}}{\frac{1 - t}{t}}}

Que é o mesmo que:

\\ \mathsf{f\left ( \frac{1}{t} \right ) = \frac{\frac{1 - 4t^2}{t^2}}{\frac{1 - t}{t}}} \\\\\\ \mathsf{f\left ( \frac{1}{t} \right ) = \frac{1 - 4t^2}{t^2} \div \frac{1 - t}{t}}

Para multiplicar as duas fracções devemos inverter a segunda. Lembre-se que: \mathsf{\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}}.

Agora, já tens a "ferramenta" necessária para concluir o exercício!

Espero ter ajudado.

Dúvidas, comente!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}