• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Evidência em fator comum] Como faço nesse caso?

[Evidência em fator comum] Como faço nesse caso?

Mensagempor danielneiva » Sáb Ago 20, 2016 13:31

"Se f(x)=a^x, pode-se afirquer que \frac{f(x+1)-f(x-1)}{f(2)-1} é igual a:
(A) f(x-1)
(B) f(x)
(C) f(x+1)
(D) f(-x)"

Eu vi a resolução dessa questão, e após substituir as funções ficou \frac{a^{x+1}-a^{x-1}}{a^2-1}
Logo após colocaram a^x e ficou \frac{\frac{a^x(a^2-1)}{a}}{a^2-1}
Eu não entendi como que funcionou essa evidência, porquê colocou a^2 dentro do parênte...
Desde já obrigado! =D
danielneiva
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Ago 16, 2016 22:11
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Evidência em fator comum] Como faço nesse caso?

Mensagempor Cleyson007 » Sáb Ago 20, 2016 17:28

Olá, boa tarde amigo!

Estou partindo do pressuposto que tenhas entendido a substituição (caso não tenha, me comunique por favor). Vamos lá:

\frac{a^{x+1}-a^{x-1}}{a^2-1}

\frac{a^{x+1}-a^{x-1}}{a^2-1}\Rightarrow\frac{{a}^{x}.{a}^{1}-\frac{{a}^{x}}{{a}^{1}}}{a^2-1}

Agora sim, vamos colocar o termo {a}^{x} em evidência: \frac{{a}^{x}\left( a-\frac{1}{a}\right)}{a^2-1}

Prosseguindo...

\frac{{a}^{x}\left( \frac{a^2-1}{a}\right)}{a^2-1}

Apenas tirou-se o mmc dentro do parêntese!

Usando a regra da divisão de frações:

{a}^{x}\left(\frac{a^2-1}{a} \right)\left(\frac{1}{a^2-1} \right)\Rightarrow\frac{a^x}{a}={a}^{x-1}

Logo, a alternativa correta é a letra A.

--> Sou professor de Matemática e tenho um e-mail destinado a resolução de exercícios. Talvez tenha interesse em conhecer o nosso trabalho, acesse: viewtopic.php?f=151&t=13614

Atendo também pelo WhatsApp: (38) 9 9889 5755

Bons estudos
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Evidência em fator comum] Como faço nesse caso?

Mensagempor danielneiva » Sáb Ago 20, 2016 22:28

Muito obrigado Cleyson!
danielneiva
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Ago 16, 2016 22:11
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 17 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D