• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Imagem da Função

Imagem da Função

Mensagempor matheus_frs1 » Sáb Mai 21, 2016 21:03

Como eu faço para determinar algebricamente a imagem de uma função? O domínio eu sei q tem algumas condições de existência, como não poder ter denominador nulo e raiz de índice par de número negativo. Mas determinar a imagem eu não sei, só através de gráfico, mas através de gráfico não consegui com essa função aqui.

f(x)=\frac{{x}^{2}-x-6}{x-3}

Como determinar algebricamente a imagem desta função, por favor.

Obrigado, galera.
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Imagem da Função

Mensagempor e8group » Seg Mai 23, 2016 10:40

Depende das ferramentas que você dispõem .. Para uma classe de funções , vários conceitos topológicos , como compacidade , conexidade são preservados . Assim , e.g, uma função f : [a,b] \subset \mathbb{R} \longrightarrow   \mathbb{R} não pode ter imagem ilimitada , salve em alguns casos onde esta função não é contínua . No caso contínumo a imagem de f será precisamente um intervalo fechado .. Um resultado útil é o seguinte : Dada qualquer f : A \longrightarrow B (não necessariamente uma bijeção ) fazemos corresponde uma bijeção g : D \longrightarrow  f(A) dada por g(x) = f(x) , onde f(A) é imagem de f ( a que queremos determinar ) e D  \subset A é obtido do seguinte modo :

Modo 1 : Usando relação de equivalencia

Dado dois elementos x,y em A, vamos dizer que eles são equivalentes(notação x \sim y se f(x) = f(y) . Esta relação é o que chamamos de relação de equivalence em A . (Ela é reflexiva , simétrica e transitiva ) . Dado x \in A definimos [x]_{\sim} := \{ y \in A   ;     f(y) = f(x) \} . Um bom exercício (o qual pode verificar para p qualqer relação de equivalence ) é que duas classes quaisquer [x]_{\sim} , [y]_{\sim} são disjuntas ou são iguais . Então para cada classe [x]_{\sim} escolhemos um representante digamos x ... E assim ,D pode ser obtido como o subconunto de A constituidos destes elemenos x .. Então g será injetiva logo uma bijeção e portanto g admirtira uma inversa g^{-1} e assim sua imagem pode ser efetivamente determinada que e é preisamente o domínio da inversa ... Este seria uma forma 'algebrica' ..as demais são mais 'analiticas ' ... I 'm sorry .... Estou sem tempo e nao conseguir redigir tudo proprieamenrte .. E o modo 2 é a mesma ideia porem mais informal ..
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Imagem da Função

Mensagempor matheus_frs1 » Qui Jun 16, 2016 21:07

Nossa, serei sincero... entendi muito pouco da explicação. Mas pelo que vejo é melhor usar uma análise para determinar a imagem, já que achar o domínio da função inversa é mais trabalhoso.

Obrigado, Santiago.
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 26 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D