• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DOMÍNIO.

DOMÍNIO.

Mensagempor Matpas » Ter Set 22, 2015 10:27

Amigos, como se resolve o exercício abaixo?

Sabendo que f(x+1) = 2x, quanto vale f(4)?
Matpas
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Ago 25, 2015 15:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: DOMÍNIO.

Mensagempor DanielFerreira » Ter Out 06, 2015 06:36

Comparando f(x + 1) com f(4), temos que:

\\ x + 1 = 4 \\ x = 4 - 1 \\ x = 3

Daí,

\\ f(x + 1) = 2x \\ f(3 + 1) = 2 \cdot 3 \\ \boxed{f(4) = 6}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: DOMÍNIO.

Mensagempor Matpas » Ter Out 06, 2015 10:04

Valeu amigo. Obrigado pela ajuda.
Matpas
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Ago 25, 2015 15:48
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?