• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema ponto fixo (Livro do Thomas Ed Pearson)

Teorema ponto fixo (Livro do Thomas Ed Pearson)

Mensagempor Luiz Augusto Prado » Ter Dez 22, 2009 16:02

Olá Pessoal!
Comprei o livro do George B. Thomas 11ª edição da editora pearson.
Olhem esta questão.
seção 2.6 exercicio 59:
Um teorema de ponto fixo
Suponha que a função f(x) seja continua no espaço fechado [0,1] e que 0 \leq f(x) \leq 1 para x em [0,1]. Mostre que deve existir um número c em [0,1] tal que f(c)=c (cé chamado ponto fixo de f).

Como é possivel existir um f(c)=c sem definir a função? Se a função fosse f(x)= -x^2+2x , a função seria contínua para x entre [0,1] e f(x) entre [0,1], mas não existe f(c)=c alem dos pontos x=0 e x=1. Para que existisse f(c)=c diferente de 0 e 1, devemos achar o x de f(x) que toque a reta dada pela função g(x)=x. A única forma que consigo fazer para que exista obrigatoriamente pelo menos um f(c)=c é afirmando que f(x) seja continua e decrescente para x entre [0,1]. Cometi algum erro de interpretação? O que esta questão está pedindo?
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Teorema ponto fixo (Livro do Thomas Ed Pearson)

Mensagempor Elcioschin » Qua Dez 23, 2009 09:14

Considere a função y = senx
Considere agora a função y = 1 + senx

Esta função é igual à primeira deslocada 1 para cima. Nela, a partes inferiores da senóide tangenciam o eixo das abcissas.
Considere apenas dois pontos de tangência, marque 0,5 no 1º ponto de tangência e 1 no segundo ponto e tangência.
Marque 1 na ordenada máxima desta função.

Esqueça agora que é uma função seno.
Esta função (sem nome) varia entre 0 e 1 para x entre 0 e 1
Note que, para x = 0 ----> f(x) = 0 ----> Neste caso c = 0 -----> f(c) = c
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Teorema ponto fixo (Livro do Thomas Ed Pearson)

Mensagempor Luiz Augusto Prado » Qua Dez 23, 2009 15:07

Você definiu a função. Pelo que entendi do exercício qualquer função que toque g(x)=x tem este exato x como um ponto fixo.

Para f(x) = 1 + sen(x) existe um ponto x entre ( pi/2, pi ) onde f(x) = x. E este é um ponto fixo de f(x). Para x entre ( pi/2, pi ) a função é decrescente. O que não entendi é se o teorema deve ser válito para todo o tipo de função. A questão do exercício parece afirmar isso. Onde encontro mais sobre o teorema do ponto fixo? A wikipédia e outros textos da Internet falam como se já soubéssemos o que seja isso.

Elcioschin escreveu:Considere apenas dois pontos de tangência, marque 0,5 no 1º ponto de tangência e 1 no segundo ponto e tangência.
Marque 1 na ordenada máxima desta função.
.
0,5pi e 1pi?
Avatar do usuário
Luiz Augusto Prado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Nov 27, 2009 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D