• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcúlo de área - o que há de errado?

calcúlo de área - o que há de errado?

Mensagempor natanaelskt » Dom Set 15, 2013 17:32

(UEG-2012) Em um terreno ,na forma de um triângulo retângulo será construído um jardim retangular,conforme a figura abaixo.

FIGURA DE UM TRIÂNGULO COM O RETANGULO INSCRITO.

Sabendo-se que os dois menores lados do terreno medem 9m e 4m,as dimensões do jardim para que ele tenha a maior área possível,serão,respectivamente.

a-) 2m e 4,5m
b-)3m e 4m
c-)3,5m e 5m
d-)2,5m e 7m

Resolvi o exercício e acertei,mas agora que vem a dúvida.porque a área tem que ser máxima e eu achei os lados que são 2m e 4,5m,porém para ser a maior área possível,o produto tem que ser máximo e por isso eu acho que a maior área seria os de lados 3,5 e 5 ou 2,5 e 7 porque o produto desses dá o maior valor,o problema é que pelo meus cálculos os números encontrados são 2 e 4,5 e eu acertei e meus cálculos estão certos,então a matemática falhou?
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcúlo de área - o que há de errado?

Mensagempor natanaelskt » Ter Dez 24, 2013 10:52

VAMO GALERA ME AJUDA
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.