• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mack-SP

Mack-SP

Mensagempor -Sarah- » Sáb Fev 23, 2013 18:56

(Mack-SP) Os valores de x para os quais log5^(x^2 - 3/2x) < 0, são:

a) -1/2<x<0 ou 3/2<x<2

b) 0<x<3/2

c) -1/2<x<2

d) x<0 ou x>3/2
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mack-SP

Mensagempor young_jedi » Seg Fev 25, 2013 21:27

\log 5^{x^2-\frac{3}{2}x}<0

x^2-\frac{3}{2}x.\log 5<0

x\left(x-\frac{3}{2}\right).log5<0

como log 5 é menor que zero então é um valor negativo portanto a expressão que esta multiplicando tem que ter valor possitivo, ou seja

x\left(x-\frac{3}{2}\right)>0

portanbto

x<0 ou x>3/2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Mack-SP

Mensagempor -Sarah- » Ter Fev 26, 2013 20:01

Muito obrigada! Mas, fiz de outro modo e não alcancei o mesmo resultado, não sei o que pode estar errado:

log5^(x^2-3/2x) <0
log5^(x^2-3/2x) < log5^1
x^2 -3/2x - 1 < 0
X1= 2
x2= -1/2

C.E
x^2-3/2>0
x(x-3/2)>0
X>0
X>3/2

Então {x E R I -1/2<x<0 ou 3/2 <x<2}
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mack-SP

Mensagempor young_jedi » Ter Fev 26, 2013 20:14

na verdade voce tem que

\log5^{x^2-3/2x}<log1

\log5^{x^2-3/2x}<log5^0

dai

x^2-3/2x>0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Mack-SP

Mensagempor -Sarah- » Ter Fev 26, 2013 20:20

Oh God.. Ok Obrigada!
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: