• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Domínio] Determinar domínio a partir da função

[Domínio] Determinar domínio a partir da função

Mensagempor +danile10 » Qui Fev 07, 2013 21:33

Tenho o seguinte exercício para resolver:

Calcule o domínio máximo D da seguinte função:

Observação: A notação f:D \subset X -> Y indica uma função f:D -> Y, onde D \subset X

f:D\subset R -> R, f(x) = 1/ √x² - 1

___________________________________________________________________________________________

sabendo que o denominador deve ser diferente de 0 , devo descobrir a raiz de x² - 1 = 0 e sabendo que
x² - 1 está contido em uma raiz, devo considerar x² - 1 > 0

x² = 1
x = √1
x = -1 e 1

D = {x \epsilon R / 1 < x < - 1}

Estou correto no procedimento e resultado? Há um jeito mais simples de resolver o exercício?

Obrigado
+danile10
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Fev 03, 2013 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Curso de Bases Matemáticas
Andamento: cursando

Re: [Domínio] Determinar domínio a partir da função

Mensagempor e8group » Qui Fev 07, 2013 22:38

Estar correto .

Tal função f estar definida somente quando \sqrt{x^2 - 1}} \neq 0 e x^2 - 1 > 0 . Ou seja , D_f  = \{x\in \mathbb{R} : x^2 - 1 > 0   \} .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)