• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gráfico das Funções

Gráfico das Funções

Mensagempor Luna » Sáb Set 12, 2009 17:41

Preciso fazer os seguintes gráficos:
A) g(x)=-x³+2x-1.
B)h(x)=Sen(x+1)

Eu não estou conseguindo se alguem puder de ajudar!
Luna
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qui Set 10, 2009 19:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: cursando

Re: Gráfico das Funções

Mensagempor Elcioschin » Dom Set 13, 2009 21:19

Luna

Por favor poste apenas 1 questão por tópico.
Vou resolver a primeira:

g(x) = - x³ + 2x - 1

1) O primeiro passo é encontrar as raízes.

Nota-se facilmente que x = 1 é uma raiz ---> - 1³ + 2*1 - 1 = - 1 + 2 - 1 = 0

2) Para descobrir as outras 2 raízes basta dividir o polinômio do primeiro membro por (x - 1). Você encontrará:

- x³ = 2x - 1 = (x - 1)*(- x² - x + 1).

As outras duas raízes são dadas por - x² - x + 1 = 0 -----> x² + x - 1 = 0

Aplicando Bhaskara as raízes são ----> x = (- 1 - V5)/2 e x = (- 1 + V5)/2

Já temos as três raízes ---> 3 pontos da curva.

Dois outros pontos importantes são os pontos de máximo e mínimo relativos da função g(x).
Para calculá-los é necessário derivar a função:

g(x) = - x³ + 2x - 1 -----> g'(x) = - 3x² + 2 -----> - 3x² + 2 = 0 ----> 3x² = 2 ----> x² = 2/3 ----> x² = 6/9

Temos duas soluções ----> x = + V6/3 e x = - V6/3 ---> Calcule agora os dois valores correspondentes de g(x)

Dê outros valores para x no entorno dos 3 pontos já conhecidos e calcule os valores correspondentes de g(x).

Por exemplo ----> x = - 3, -2, -1, 0, +1, +2, +3

Agora é só desenhar o gráfico!
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?