por Fabio Cabral » Qua Out 06, 2010 11:48
Olá, pessoal.
Esse é meu primeiro post nesse fórum. Se eu estiver fazendo alguma coisa errada por favor me avisem, não tive tempo de ler as regras de postagem.
Recebi uma lista com 60 questões que estou tendo dificuldades, mas com a ajuda de vocês, creio que conseguirei tranquilamente.
Eu estou com dúvida no seguinte.

o enunciado diz: Aplicando propriedades de limites e algébricas, calcule cada limite abaixo e avalie sua existência, dizendo se eles existem ou não.
DÚVIDA: Terei que fatorar esse polinômino, correto ? Terei que achar os limites laterais antes ( 0+, 0-) correto ?
pelos meus cálculos

e

. Isso está correto ?
Att, Fábio Cabral.
ps.: Ingressei neste fórum pois aqui, as pessoas não dão as respostas prontas, mas ensinam

Editado pela última vez por
Fabio Cabral em Qua Out 06, 2010 12:24, em um total de 1 vez.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por MarceloFantini » Qua Out 06, 2010 12:19
Olá Fábio, não precisa encontrar as raízes. Veja:

Para

:

Isso mostra que dos dois lados o limite existe e é zero.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Fabio Cabral » Qua Out 06, 2010 12:38
ôpa, já corrigi o tópico.
Amigo, o professor resolvia substituindo o "0" no polinômino.
isso causa uma indeterminação, correto?
A gente tinha que tentar sair dessa indeterminação..
eu não sei explicar corretamente, mas a monitora afirmou que isso era igual a +

.
Vou postar aqui o jeito que foi feito pra você analisar:
Compreendeu?
Abraços

" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por MarceloFantini » Qua Out 06, 2010 12:58
Bom, agora que está corrigido então faz sentido que seja infinito. Veja que, quando x se aproxima de 0, o denominador se aproxima de 0. Um denominador muito pequeno gera uma um número muito grande, uma vez que é constante em cima. Para analisar o sinal, agora sim faz sentido fatorar:

Quando

, o produto

é negativo, logo

.
Quando

, o produto

é positivo, logo

.
Como os limites laterais não coincidem, o limite não existe.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Fabio Cabral » Qua Out 06, 2010 13:26
Perfeito, Fantini.
Só fiquei com uma dúvida, como você chegou nesse?

" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por MarceloFantini » Qua Out 06, 2010 13:33
Eu calculei as raízes de

e escrevi na forma fatorada.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Fabio Cabral » Qui Out 07, 2010 11:04
Valeu, Fantini.
To conseguindo fazer algumas. Se tiver mais uma dúvida, perguntarei a você.
Obrigado e até !

" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
-
Fabio Cabral
- Colaborador Voluntário

-
- Mensagens: 122
- Registrado em: Qua Out 06, 2010 11:33
- Localização: Brasília-DF
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2591 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
-
- Limites laterais
por valeuleo » Sáb Abr 09, 2011 21:07
- 8 Respostas
- 5538 Exibições
- Última mensagem por MarceloFantini

Dom Abr 10, 2011 21:00
Cálculo: Limites, Derivadas e Integrais
-
- Limites Laterais
por FernandaBS » Sex Mai 25, 2012 18:04
- 3 Respostas
- 3518 Exibições
- Última mensagem por Guill

Sáb Mai 26, 2012 15:26
Cálculo: Limites, Derivadas e Integrais
-
- [Limites laterais] Questão
por Leti Moura » Qui Jun 14, 2012 00:52
- 11 Respostas
- 6154 Exibições
- Última mensagem por Leti Moura

Sáb Jun 16, 2012 21:36
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites laterais..!
por mih123 » Ter Ago 28, 2012 15:40
- 8 Respostas
- 4760 Exibições
- Última mensagem por MarceloFantini

Qua Ago 29, 2012 16:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.