• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITES LATERAIS

LIMITES LATERAIS

Mensagempor Fabio Cabral » Qua Out 06, 2010 11:48

Olá, pessoal.
Esse é meu primeiro post nesse fórum. Se eu estiver fazendo alguma coisa errada por favor me avisem, não tive tempo de ler as regras de postagem.
Recebi uma lista com 60 questões que estou tendo dificuldades, mas com a ajuda de vocês, creio que conseguirei tranquilamente.

Eu estou com dúvida no seguinte.
\lim_{x\rightarrow0} \frac{3x}{({x}^{4}-{4x}^{3}+{x}^{2})}

o enunciado diz: Aplicando propriedades de limites e algébricas, calcule cada limite abaixo e avalie sua existência, dizendo se eles existem ou não.

DÚVIDA: Terei que fatorar esse polinômino, correto ? Terei que achar os limites laterais antes ( 0+, 0-) correto ?

pelos meus cálculos \lim_{x\rightarrow0+} = \infty e \lim_{x\rightarrow0-} = -\infty. Isso está correto ?

Att, Fábio Cabral.


ps.: Ingressei neste fórum pois aqui, as pessoas não dão as respostas prontas, mas ensinam ;)
Editado pela última vez por Fabio Cabral em Qua Out 06, 2010 12:24, em um total de 1 vez.
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES LATERAIS

Mensagempor MarceloFantini » Qua Out 06, 2010 12:19

Olá Fábio, não precisa encontrar as raízes. Veja:

\lim_{x \to 0} \frac{x^4 -4x^3 +x^2}{3x} = \lim_{x \to 0} \frac{x^2(x^2 -4x +1)}{3x}

Para x \neq 0:

\lim_{x \to 0} x(x^2 -4x +1) = 0

Isso mostra que dos dois lados o limite existe e é zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: LIMITES LATERAIS

Mensagempor Fabio Cabral » Qua Out 06, 2010 12:38

ôpa, já corrigi o tópico.

Amigo, o professor resolvia substituindo o "0" no polinômino.
isso causa uma indeterminação, correto?

A gente tinha que tentar sair dessa indeterminação..
eu não sei explicar corretamente, mas a monitora afirmou que isso era igual a +\infty.

Vou postar aqui o jeito que foi feito pra você analisar:

\lim_{x\rightarrow0} \frac{3x}{({x}^{4}-{4x}^{3}+{x}^{2})} =  \lim_{x\rightarrow0} \frac{3}{({x}^{3}-{4x}^{2}+x)} =\lim_{x\rightarrow0}    \left[3 \right].\left[ \frac{1}{({x}^{3}-{4x}^{2}+x)} \right] = +\infty


Compreendeu?


Abraços
*-)
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES LATERAIS

Mensagempor MarceloFantini » Qua Out 06, 2010 12:58

Bom, agora que está corrigido então faz sentido que seja infinito. Veja que, quando x se aproxima de 0, o denominador se aproxima de 0. Um denominador muito pequeno gera uma um número muito grande, uma vez que é constante em cima. Para analisar o sinal, agora sim faz sentido fatorar:

\lim_{x \to 0} \frac{3x}{x^4 -4x^3 +x^2} = \lim_{x \to 0} \frac{3}{x^3 -4x^2 +x} = \lim_{x \to 0} \frac{3}{x(x-2 + \sqrt{3})(x-2 - \sqrt{3})}

Quando x \to 0^-, o produto x(x-2 +\sqrt{3})(x -2 - \sqrt{3}) é negativo, logo \lim = - \infty.

Quando x \to 0^+, o produto x(x-2+\sqrt{3})(x-2-\sqrt{3}) é positivo, logo \lim = +\infty.

Como os limites laterais não coincidem, o limite não existe.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: LIMITES LATERAIS

Mensagempor Fabio Cabral » Qua Out 06, 2010 13:26

Perfeito, Fantini.

Só fiquei com uma dúvida, como você chegou nesse?
\lim_{x \to 0} \frac{3}{x(x-2 + \sqrt{3})(x-2 - \sqrt{3})}

:y:
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: LIMITES LATERAIS

Mensagempor MarceloFantini » Qua Out 06, 2010 13:33

Eu calculei as raízes de x^2 -4x +1 e escrevi na forma fatorada.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: LIMITES LATERAIS

Mensagempor Fabio Cabral » Qui Out 07, 2010 11:04

Valeu, Fantini.
To conseguindo fazer algumas. Se tiver mais uma dúvida, perguntarei a você.

Obrigado e até ! ;)
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}