• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Exponencial definida por mais de uma sentença

Função Exponencial definida por mais de uma sentença

Mensagempor JoaoGabriel » Dom Set 26, 2010 09:53

(Unifesp-SP) Se A é o conjunto dos números reais diferentes de 1, seja f: A ---->A dada por f(x) = \frac{x+1}{x-1}.
Para um número inteiro positivo n, f^n(x) é definida por:

f^n(x) =

{f(x),  n = 1

{f(f^n^-^1(x)),  n>1

Então, f^5(x) vale:
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando

Re: Função Exponencial definida por mais de uma sentença

Mensagempor MarceloFantini » Dom Set 26, 2010 23:24

Para n=2: f(f(x)) = \frac{(x+1)+1}{(x-1)-1} = \frac{x+2}{x-2}.

Para n=3: f(f^2(x)) = \frac{(x+2)+1}{(x-2)-1} = \frac{x+3}{x-3}.

Para n=4: f(f^3(x)) = \frac{(x+3)+1}{(x-3)-1} = \frac{x+4}{x-4}.

Para n=5: f(f^4(x)) = \frac{(x+4)+1}{(x-4)-1} = \frac{x+5}{x-5}.

De maneira geral:

f^n (x) = \frac{x+n}{x-n}

Eu fiz um por um para mostrar o padrão. É essa a resposta?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)