• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função injetora, sobrejetora.. par, ímpar?

Função injetora, sobrejetora.. par, ímpar?

Mensagempor Jonatan » Sex Jul 30, 2010 11:59

Diga se a função y = x², definida em R, é par ou ímpar, se é injetora, se é sobrejetora ou bijetora.

Fiz o gráfico para ajudar, parábola com concavidade voltada para cima.
A função é PAR pois para valores simétricos de x tem-se imagens y iguais.

A função não é injetora pois para 2 valores distintos de x tem-se imagens iguais, contrariando assim a definição de uma função injetora.

A função é ou não sobrejetora???

A minha dúvida é esta... para ser sobrejetora, a função deve ter sua imagem igual ao contradomínio dado no enunciado do exercício, no caso o conjunto dos números reais.

Só que como a concavidade é voltada para cima, o gráfico não abrange ordenadas y menores que zero, e aí fica a minha dúvida... para ser sobrejetora ela deve ter imagem igual a TODO o contradomínio ou se ela tiver parte deste contradomínio ela já é considerada sobrejetora?
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função injetora, sobrejetora.. par, ímpar?

Mensagempor MarceloFantini » Sex Jul 30, 2010 15:08

Ela pode ser bijetora ou não, depende de como você definir domínio e contra-domínio.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59