• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor flavio2010 » Sáb Jul 17, 2010 19:11

Dada a função do segundo grau f(x)=x^2+m^2x+m^2+1 definida para todo x real e, sendo m um número real e difernete de zero podemos garantir que o gráfico cartesiano desta função:
a) corta o eixo das abscissas.
b) não corta o eixo das abscissas.
c) corta o eixo das abscissas em dois pontos cujas as abscissas tem o mesmo sinal.
d) corta o eixo das abscissas em dois pontos cujas as abscissas tem sinais contrários.
e) pode não cortar o eixo das abscissas ou,se o fizer será em pontos de abscissas nagativa.
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Parábola

Mensagempor Tom » Sáb Jul 17, 2010 22:20

Inicialmente avaliaremos se f tem raízes reais:

Para tal, o discriminante da equação deve ser não-nulo, isto é , \Delta=m^4-4.1.(m^2+1)\ge0\rightarrow m^4-4m^2+4-8\ge0 e decorre em
(m^2-2)^2-8\ge0\rightarrow (m^2-2-2\sqrt{2})(m^2-2+2\sqrt{2})\ge 0

Assim, a depender do valor de m, a equação pode ou não apresentar raízes reais; o que já descarta todas as opções com exceção da alternativa E

Uma observação importante é que, de fato, se f apresentar raízes reais, então elas serão ambas negativas, conforme a Regra dos Sinais de Descartes.

Concluímos, de fato, que a alternativa E é a correta.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59