• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função lagrangeana

função lagrangeana

Mensagempor jmario » Sex Mai 21, 2010 09:23

Alguém pode me dizer se a resolução dessa função utilidade está correta

U(x,y)={x}^{\alpha}{y}^{1-\alpha}
derivando
\alpha{x}^{\alpha-1}{y}^{1-\alpha}
(1-\alpha){x}^{\alpha}{y}^{-\alpha}

L={x}^{\alpha}{y}^{1-\alpha}-\lambda(xp+yq=m)

\alpha{x}^{\alpha-1}{y}^{1-\alpha}=\lambda\rightarrow\frac{\lambda=\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{p}
\(1-alpha){x}^{\alpha}{y}^{-\alpha}=\lambda\rightarrow\frac{\lambda=\((1-\alpha){x}^{\alpha}{y}^{-\alpha}}{q}

restrição orçamentária
xp+yq=m

\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{p} = \frac{(1-\alpha){x}^{\alpha}{y}^{-\alpha}}{q}
\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}{{x}^{\alpha}{y}^{-\alpha}} = \frac{(1-\alpha)p}q}\rightarrow\alpha{x}^{-1}yq=(1-\alpha)p
\alpha\frac{1}{x}yq=(1-\alpha)p\rightarrow\frac{\alpha}{x}yq=(1-\alpha)
yq=\frac{(1-\alpha)}{\alpha}px
xp+\frac{1-\alpha}{\alpha}px=m
px\left(1+\frac{1-\alpha}{\alpha} \right)=m
px\left(\frac{\alpha+1-\alpha}{\alpha} \right)=m
px\frac{1}{\alpha}=m\rightarrow
x=\alpha\frac{m}{p}

como qy=\frac{1-\alpha}{\alpha}px
qy=\frac{1-\alpha}{\alpha}p\alpha\frac{m}{p}=y(1-\alpha)\frac{m}{q}
\lambda=\frac{\alpha{x}^{\alpha-1}{y}^{1-\alpha}}p}
\lambda=\frac{\frac{{\alpha\alpha}^{\alpha-1}{m}^{\alpha-1}}{{p}^{\alpha-1}}.\frac{{(1-\alpha)}^{1-\alpha}{m}^{1-\alpha}}{{q}^{1-\alpha}}}{p}
\lambda=\left(\frac{\alpha}{p} \right)^{\alpha}\left(\frac{1-\alpha}{q} \right)^{1-\alpha}

Será que isso?
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}