• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda na Simplificação

Ajuda na Simplificação

Mensagempor RJ1572 » Sex Abr 09, 2010 00:12

Boa noite.

Neste exercício deve-se achar a soma das raízes da equação.

({P}^{2}-2P\sqrt[2]{2}+\sqrt[2]{3}).({P}^{2}-P\sqrt[2]{2}-\sqrt[2]{3})

Mas o objetivo não seria multiplicar tudo, pois leva muito tempo.

Existe alguma propriedade de simplifição para isso?

Não sei se procede, mas pensei em cortar as duas raizes de 3 e simplificar o' P' sobrando (P-2\sqrt[2]{2}).(P-\sqrt[2]{2})= 0
Dessa forma P1 = 2\sqrt[2]{2}e P2 =\sqrt[2]{2}

Assim a soma seria 3\sqrt[2]{2} que é a resposta.

Isto está certo???
RJ1572
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Fev 26, 2010 13:00
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda na Simplificação

Mensagempor Elcioschin » Sex Abr 09, 2010 13:04

Vc não mostrou uma equação, mostrou apenas uma expressão. Imagino que seja:

(P² - 2*P*V2 + V3)*(P² - 2*P*V2 - V3) = 0

Basta lembrar que (a + b)*(a - b) = a² - b²

No seu problema -----> a = P² - 2*V2*P ----> b = V3

(P² - 2*V2*P + V3)*(P² - 2*V2*P - V3) = 0

(P² - 2*V2*P)² - (V3)² = 0

(P² - 2*V2*P)² = (V3)²

P² - 2*V2*P = V3

P² - 2*V2*P - V3 = 0 ----> Equação do 2º grau ----> D = (2*V2)² - 4*1*(-V3) ----> D = 8 + 4*V3 ---> D = 8 + V48

Lembrando que V(A + VB) = Vx + Vy ----> x = [A + V(A² - B)]/2 ----> y = [A - V(A² - B)]/2

D = 8 + V48 ---> VD = V(8 + V48) ---> A = 8 ----> B = 48 ---> A² - B = 8² - 48 ---> A² - B = 16 ---> V(A² - B) = 4

x = (8 + 4)/2 ----> x = 6 -----> y = (8 - 4)² ----> y = 2 ----> VD = V6 + V2

Raízes: x' = [2*V2 + (V6 + V2)]/2 ----> x' = (3*V2 + V6)/2 ----> x" = [2*V2) - (V6 + V2)]2 ----> x" = (V2 - V6)/2

Assim,acho que o gabarito está errado.
Por favor verifique minhas contas e confirme o enunciado correto do problema.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Ajuda na Simplificação

Mensagempor RJ1572 » Sex Abr 09, 2010 14:53

Realmente é uma equação.

Consegui chegar a resposta já.

A soma da 1 equação dentro do primeiro parêntese (-b/a) = 2\sqrt[2]{2}

A soma da 2 equação dentro do 2 parêntese (-b/a) = \sqrt[2]{2}

Logo a soma total é 3\sqrt[2]{2}

De qualquer forma, obrigado pela ajuda.
RJ1572
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Fev 26, 2010 13:00
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda na Simplificação

Mensagempor Elcioschin » Sex Abr 09, 2010 18:41

rJ1572

Eu cometí um erro de leitura: considerei o 2º parenteses como P² - 2*P*V2 - V3 e o certo é P² - V2*P - V3
Vc tem toda a razão: basta calcular -b/a do primeiro e do segundo parenteses. É bem mais simples.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59