por adauto martins » Seg Mai 24, 2021 11:28
(ITA-1956)demonstrar que

admite raizes sempre distintas,qualquer que seja o valor real de a.
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Seg Mai 24, 2021 11:42
soluçao
consideremos o

da equaçao

se tomarmos

,teremos

nao existe a real que satisfaça

logo,nao teremos raizes reais e iguais...

de fato

o que implica

sempre positivo para qualquer a real...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por DanielFerreira » Sáb Jun 19, 2021 21:10
Adauto, parece-me que esquecera de considerar uma restrição para

.
Note que se

, então a equação do enunciado não terá grau dois! Com efeito, perderá sentido o termo "raízes sempre distintas".
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por adauto martins » Ter Jun 22, 2021 15:10
pois é daniel,
vi sim essa restriçao,mas creio que o autor da questao,no meu entender ,quiz dar importancia ao uso do "delta" nas condiçoes de solubilidade da eq. de segundo grau.o "delta" como fiz esta correto,mas quando vc procura as raizes,usando o calculo do "delta",para a=1,tem-se uma indeterminaçao,divisao por zero.entao fica em aberto essa questao...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por DanielFerreira » Ter Jun 22, 2021 16:31
adauto martins escreveu:pois é daniel,
vi sim essa restriçao,mas creio que o autor da questao,no meu entender ,quiz dar importancia ao uso do "delta" nas condiçoes de solubilidade da eq. de segundo grau.o "delta" como fiz esta correto,mas quando vc procura as raizes,usando o calculo do "delta",para a=1,tem-se uma indeterminaçao,divisao por zero.entao fica em aberto essa questao...
Adauto, não teremos uma indeterminação, mas sim uma equação de grau um. Veja:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por adauto martins » Qui Jun 24, 2021 16:35
caro daniel,
considerando a instituiçao de ensino em engenharia ITA,e sua gloriosa historia,desde de os primordios na EsTE(1933/57)
a menos que o autor da questao possa ter cometido algum erro,sua resposta a essa questao seria reprovada.
as provas do ITA, assim como da EsTE,depois IME(1958/...),na decada de 1950 eram todas discursivas,e de qquer forma teria de apresentar justificativa,ponto de visto,conhecento...considero minha resposta suficiente,mas a questao para mim continua em aberto...obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio resolvido
por adauto martins » Sex Jul 15, 2016 14:48
- 0 Respostas
- 18533 Exibições
- Última mensagem por adauto martins

Sex Jul 15, 2016 14:48
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Qua Jul 20, 2016 18:35
- 0 Respostas
- 17171 Exibições
- Última mensagem por adauto martins

Qua Jul 20, 2016 18:35
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Ter Jul 26, 2016 17:43
- 0 Respostas
- 8101 Exibições
- Última mensagem por adauto martins

Ter Jul 26, 2016 17:43
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Sáb Ago 13, 2016 11:28
- 0 Respostas
- 4290 Exibições
- Última mensagem por adauto martins

Sáb Ago 13, 2016 11:28
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Sex Out 18, 2019 14:29
- 2 Respostas
- 8847 Exibições
- Última mensagem por adauto martins

Sex Out 18, 2019 15:42
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.