• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolv.exponencial

exerc.resolv.exponencial

Mensagempor adauto martins » Ter Jul 09, 2019 13:40

(ita-1973)a de composiçao do radium no tempo t\geq 0,é dada por m(t)=c.{{e}^{}}^{-kt},
onde m(t) é a quantidade de radium no tempo t;c,k sao constantes positivas,e e o neperiano.se a metade
da quantidade primitiva m(0),desaparece em 1600 anos,qual a quantidade perdida em 100 anos?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 762
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.exponencial

Mensagempor adauto martins » Ter Jul 09, 2019 13:59

soluçao:
a quantidade primitiva m(0) sera:
m(0)=c.{{e}^{}}^{-kt}=c...
em m(1600) sera:
m(1600)=c.{e}^{-1600k}=c/2 \Rightarrow {e}^{-1600k}=1/2...

ln({e}^{-1600k})=ln(1/2) \Rightarrow k=ln(2)/(1600)...
em 100 anos teremos:
m(100)=c.{e}^{-100.(ln2/1600)}=c.{{e}^{}}^{-ln/16}...
logo a quantidade irradiada(perdida da quantidade primitiva m(0))sera:
m(0)-m(100)=c-c.{e}^{-ln2/16}=c.(1-{e}^{-ln2/16})

           =c.(1-{2}^{-1/16})...,ou seja 1-{2}^{-1/16}... da quantidade primitiva m(0)=c...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 762
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.exponencial

Mensagempor adauto martins » Qua Jul 10, 2019 15:48

ps-
1-{e}^{-ln2/16}=1-{e}^{(-1/16).ln2}=1-{e}^{ln{2}^{(-1/16)}}

=1-{2}^{-1/16}...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 762
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.