• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolv.funçoes

exercicio resolv.funçoes

Mensagempor adauto martins » Qua Jun 13, 2018 13:16

seja f:\Re\rightarrow\Re,definida por:
f(x+y)=f(x.y)...mostre que:
a) f nao admite funçao inversa.
b)x,y sao necessariamente numeros irracionais.
soluçao:
a)
seja z=x+y,logo:
f(z)=f(x+y)=f(x.y)=f((-x).(-y))=f(-(x+y))=f(-z)...
portanto f é uma funçao par,e nao é injetiva(mostre isso),logo nao admite funçao inversa.
b)
seja x=y=2\Rightarrow f(2+2)=f(2.2),2\in N...
seja x=1,y=-(1/2)\Rightarrow f(1+(-(1/2))=f(1.(-(1/2))...1\in N,-(1/2)\in Q...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 697
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Qui Jun 14, 2018 13:21

caros colegas do site,
a letra b) que fiz esta incompleta,e com erros.farei uma pequena esplanaçao e logo,qudo puder a resolverei por completo.
pela letra a)sendo f nao injetiva,e portanto nao admite inversa nao podemos ter:
x+y=x.y,pois teriamos q. ter:
({f}^{-1}of)(x+y)=({f}^{-1}of)(x.y)\Rightarrow x+y=x.y......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 697
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Sex Jun 15, 2018 17:03

voltemos a explanaçao,ao tema anterior.
como visto antes,nao podemos ter x+y=x.y,pois invalidaremos a condiçao de nao existencia da funçao inversa.
logo,necessariamente teremos q. ter x+y\neq x.y.entao busquemos um t\in \Re,t\neq 1,t\neq -1(pq t\neq -1?),tal que x+y=t.(x.y)...logo:
x+y=t.(x.y)\Rightarrow y=t.(x.y)-x=x.(t.y-1)\Rightarrow (y/x)=t.y-1=k,k\in Z....
y=(K+1)/t=((k/t)+(1/t))\Rightarrow,para q. y\in Z,teriamos q. ter t=1,ao qual invalidaria a nossa condiçao de nao existencia da inversa...logo, y nao pode ser inteiro...
na mesma deixa,vamos supor que:
y=(k+1)/t=(p/q),mdc(p,q)=1...\Rightarrow p=q((k/t)+(1/t))
para q. p\in Z,t teria q. ser igual a um,o q. como visto anteriormente contradiz a condiçao de nao inversa...logo y nao pode ser racional...modo analogo para x...entao x,y teem q. ser irracionais...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 697
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}