• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolv.funçoes

exercicio resolv.funçoes

Mensagempor adauto martins » Qua Jun 13, 2018 13:16

seja f:\Re\rightarrow\Re,definida por:
f(x+y)=f(x.y)...mostre que:
a) f nao admite funçao inversa.
b)x,y sao necessariamente numeros irracionais.
soluçao:
a)
seja z=x+y,logo:
f(z)=f(x+y)=f(x.y)=f((-x).(-y))=f(-(x+y))=f(-z)...
portanto f é uma funçao par,e nao é injetiva(mostre isso),logo nao admite funçao inversa.
b)
seja x=y=2\Rightarrow f(2+2)=f(2.2),2\in N...
seja x=1,y=-(1/2)\Rightarrow f(1+(-(1/2))=f(1.(-(1/2))...1\in N,-(1/2)\in Q...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Qui Jun 14, 2018 13:21

caros colegas do site,
a letra b) que fiz esta incompleta,e com erros.farei uma pequena esplanaçao e logo,qudo puder a resolverei por completo.
pela letra a)sendo f nao injetiva,e portanto nao admite inversa nao podemos ter:
x+y=x.y,pois teriamos q. ter:
({f}^{-1}of)(x+y)=({f}^{-1}of)(x.y)\Rightarrow x+y=x.y......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolv.funçoes

Mensagempor adauto martins » Sex Jun 15, 2018 17:03

voltemos a explanaçao,ao tema anterior.
como visto antes,nao podemos ter x+y=x.y,pois invalidaremos a condiçao de nao existencia da funçao inversa.
logo,necessariamente teremos q. ter x+y\neq x.y.entao busquemos um t\in \Re,t\neq 1,t\neq -1(pq t\neq -1?),tal que x+y=t.(x.y)...logo:
x+y=t.(x.y)\Rightarrow y=t.(x.y)-x=x.(t.y-1)\Rightarrow (y/x)=t.y-1=k,k\in Z....
y=(K+1)/t=((k/t)+(1/t))\Rightarrow,para q. y\in Z,teriamos q. ter t=1,ao qual invalidaria a nossa condiçao de nao existencia da inversa...logo, y nao pode ser inteiro...
na mesma deixa,vamos supor que:
y=(k+1)/t=(p/q),mdc(p,q)=1...\Rightarrow p=q((k/t)+(1/t))
para q. p\in Z,t teria q. ser igual a um,o q. como visto anteriormente contradiz a condiçao de nao inversa...logo y nao pode ser racional...modo analogo para x...entao x,y teem q. ser irracionais...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: