• Anúncio Global
    Respostas
    Exibições
    Última mensagem

zeros reais de funções reais

zeros reais de funções reais

Mensagempor bebelo32 » Dom Mar 11, 2018 21:12

1) Localize graficamente as raises das equações a seguir:

a) {2}^{x} - 3x = 0
bebelo32
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mai 03, 2014 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: computação
Andamento: formado

Re: zeros reais de funções reais

Mensagempor adauto martins » Seg Abr 23, 2018 17:51

seja y={2}^{x}-3x,temos que:
y'=ln2({2}^{x})-3

y''={ln2}^{2}.{2}^{x}\Rightarrow y''\succ 0,ou seja (pode existir ou nao ponto de minimo)
fazendo:
x=0\Rightarrow y=1\succ 0
y'=0\Rightarrow x=-(ln(ln2)/2)\simeq 1\Rightarrow y=-1\prec 0,ou seja
y tem ponto de minimo e concavidade p/cima(y''\succ 0) e valores de
(0,1),(1,-1)...como y'(\sim1-)\prec 0,y'(\sim1+)\succ 0(verifique esse fato),temos que
ycruza o eixo das abisissas duas vezes,logo duas raizes...
use o mesmo metodo e verifique que:
y={2}^{x}-{x}^{2} possui tres raizes...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: zeros reais de funções reais

Mensagempor adauto martins » Seg Abr 23, 2018 17:52

adauto martins escreveu:seja y={2}^{x}-3x,temos que:
y'=ln2({2}^{x})-3

y''={ln2}^{2}.{2}^{x}\Rightarrow y''\succ 0,ou seja (pode existir ou nao ponto de minimo)
fazendo:
x=0\Rightarrow y=1\succ 0
y'=0\Rightarrow x=-(ln(ln2)/2)\simeq 1\Rightarrow y=-1\prec 0,ou seja
y tem ponto de minimo e concavidade p/cima(y''\succ 0) e valores de
(0,1),(1,-1)...como y'(\sim1-)\prec 0,y'(\sim1+)\succ 0(verifique esse fato),temos que
ycruza o eixo das abisissas duas vezes,logo duas raizes...
use o mesmo metodo e verifique que:
y={2}^{x}-{x}^{2} possui tres raizes...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59