• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funçoes ajuda!

funçoes ajuda!

Mensagempor flavio970 » Seg Out 26, 2015 12:47

f(x) = \sqrt{x^2+6x+9}+\dfrac{2x^2+2x-4}{2x-2}.considere esta função.

a) determine o domínio de( f) na forma de intervalo ou reunião de intervalo.
b) simplifique ao máximo a expressão que define ( f ) e esboce seu gráfico.

c) calcule o valor de = \sqrt{f(6)+{f(-17)}.
flavio970
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Set 29, 2015 13:13
Formação Escolar: GRADUAÇÃO
Área/Curso: ADMINISTRAÇAO
Andamento: cursando

Re: funçoes ajuda!

Mensagempor nakagumahissao » Sex Nov 06, 2015 10:57

Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.