• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Preciso de Ajuda em Funções, Agradeço quem puder ajudar

Preciso de Ajuda em Funções, Agradeço quem puder ajudar

Mensagempor fabioduvidoso » Dom Jun 21, 2015 21:47

Dada a função f(x)=(-2m+10)x+m-4,determine m de modo que:

a)F(x) seja uma função constante

b)F(x) seja uma função do 1°Grau

c)F(x) seja uma função crescente

d)F(x) seja uma função decrescente
fabioduvidoso
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 21, 2015 21:44
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Técnico de Informática
Andamento: cursando

Re: Preciso de Ajuda em Funções, Agradeço quem puder ajudar

Mensagempor adauto martins » Seg Jun 22, 2015 14:43

a)
f(x)=(-2m+10)x+(m-4)\Rightarrow -2m+10=0\Rightarrow m=5
b)
m\succ 5 ou m\prec 5
c)
m\succ 5
d)
m\prec 5
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.