por osmarioe » Seg Mai 04, 2015 13:29
Inequação do 1° grau
Determinar a maior solução inteira de (x-1) (x+2) - (x-2)² < x+4.
Resolução: resolvendo por produto notáveis:
(x² + x - 2) - (X² - 4x + 4) < x + 4 ; 4x < 10 ; x < 2,5
logo: as soluções inteiras são : -3; -2; -1; 0; 1; 2 e a maior delas é 2.
Não entendi esse numero 10 como ele surgiu?
Obrigado !!
-
osmarioe
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Abr 26, 2015 22:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Qui Mai 07, 2015 23:46
Olá
Osmarioe, boa noite!
O

"surgiu" da redução dos termos semelhantes; isto é,

.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequação 2o grau
por guijermous » Sex Fev 26, 2010 14:29
- 3 Respostas
- 3598 Exibições
- Última mensagem por Molina

Sex Fev 26, 2010 18:00
Funções
-
- Inequação 1° grau
por Luiza » Sex Jul 16, 2010 10:14
- 1 Respostas
- 2665 Exibições
- Última mensagem por Tom

Sex Jul 16, 2010 12:34
Álgebra Elementar
-
- Inequação - 1° grau
por Alexandre Shaffer » Sáb Jul 17, 2010 22:35
- 2 Respostas
- 2205 Exibições
- Última mensagem por Alexandre Shaffer

Seg Jul 19, 2010 22:58
Álgebra Elementar
-
- Inequação de 2o grau
por mathus180 » Qua Ago 03, 2011 19:46
- 4 Respostas
- 2846 Exibições
- Última mensagem por sony01

Sex Nov 30, 2012 10:16
Sistemas de Equações
-
- [inequação de 3º grau]
por jvabatista » Qui Abr 26, 2012 18:16
- 2 Respostas
- 10032 Exibições
- Última mensagem por jvabatista

Qui Abr 26, 2012 20:24
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.