• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatores primos

Fatores primos

Mensagempor GMAT2010 » Qua Fev 03, 2010 20:59

Olá. Sei que o site pede que informem as tentativas, porém, na questão abaixo, não consegui sair do ponto de partida.

Para cada número inteiro, par e positivo "n", a função h(n) é definida como o produto de todos os inteiros pares de 2 até n. Se "p" é o menor fator primo de h(100) + 1, então p é?

a) menor que 10
b) de 10 a 20
c) de 20 a 30
d) de 30 a 40
e) maior de 40

Resp. E

Meu raciocinio foi tentar o h(6) + 1, por exemplo. nesse caso, teríamos h(6) + 1 = 2x4x6 + 1 = 49, que tem como fator 7.
GMAT2010
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 05, 2010 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng de Produção
Andamento: formado

Re: Fatores primos

Mensagempor GMAT2010 » Qui Fev 04, 2010 22:59

Alguém tem idéia de como fazer???
GMAT2010
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 05, 2010 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng de Produção
Andamento: formado

Re: Fatores primos

Mensagempor MarceloFantini » Sex Fev 05, 2010 14:01

Boa tarde GMAT.

Ainda não cheguei na resposta, porém conversando com um professor amigo meu, ele recomendou que desse uma olhada no teorema da infinidade de primos de Euclides.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatores primos

Mensagempor GMAT2010 » Sáb Fev 06, 2010 07:40

Obrigado pela dica Fantini.

Mas o que não entendo é que esse problema está numa prova (o GMAT) que deveria conter somente conteúdo de ensino médio, porém na qual não se pode usar calculadora. Será que não tem outra maneira de resolver?
GMAT2010
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jan 05, 2010 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng de Produção
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}