.Pois bem, eu fiz uma substituição através de
nas equações paramétricas. O problema foi na hora de identificar a trajetória da partícula: quando igualei t a 0, então x=1 e y=0. E quando igualei t a pi, o x também é igual a 1, e y também é zero, ou seja, a medida que aumento o t até fechar o intervalo, eu obtive o mesmo ponto que a partícula deve percorrer, ou seja, ele parte de um ponto, e depois ela volta para o mesmo ponto. E eu não tenho muita certeza se isso está correto ou não. Poderia alguém me explicar a lógica dessa questão? Enfim, quem puder, eu agradeço! Abraço!


em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.