• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda urgente.

Ajuda urgente.

Mensagempor Jovilaco » Qui Mar 14, 2013 21:20

Olá estou com dúvida sobre estes exercícios o professor passou no quadro e não consegui resolve-los. ALém do mais gostaria que alguém me indicasse o que estudar(matérias) para ir melhor nesses tipos de exercícios(levantamento de indeterminações) muito obrigado!

Lim x?0 ((?16 ?x) ?4)/x
Lim h?0 ((a + h)3 ?a3)/h
Jovilaco
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Mar 14, 2013 21:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda urgente.

Mensagempor e8group » Qui Mar 14, 2013 22:07

Por favor sempre utilize LaTeX para redigir suas expressões.Além disso ,seria importante postar apenas uma dúvida por tópico .

Observe o código e o resultado [(1),(2)]:

Código: Selecionar todos
\lim_{x\to 0} \frac{\sqrt{16-x} - 4 }{x}



(1)

\lim_{x\to 0} \frac{\sqrt{16-x} - 4 }{x}


Código: Selecionar todos
\lim_{h\to 0} \frac{(a+h)^3 - a^3 }{h}


(2)

\lim_{h\to 0} \frac{(a+h)^3 - a^3 }{h}

Resolução :

Em (1) ,basta multiplicar o numerador e o denominador por \sqrt{16-x} +4 . Fazendo as devidas simplificações e calculando o limite encontrará a resposta desejada .(Observe a^2 - b^2 = (a-b)(a+b) e também a - b = (\sqrt{a} - \sqrt{b} )(\sqrt{a} + \sqrt{b}) neste caso desde que a,b \geq 0 ,no outro não há restrição )

Em(2) ,uma das possíveis formas de solução é considerar a+h = p .Assim , quando h \to 0 , p\to a .

Deste modo, este limite é equivalente a \lim_{p\to a} \frac{p^3 - a^3 }{p-a} .

Mas , p^3 - a^3 pode ser fatorado ,isto é , p^3 - a^3 = (p-a)(p^2  +ap +a^2) .

Então , \lim_{p\to a} \frac{p^3 - a^3 }{p-a} =  \lim_{p\to a} \frac{(p-a)(p^2  +ap +a^2) }{p-a} ,visto que p \neq a ,ou seja, p -a \neq 0 podemos simplificar a expressão acima ,obtendo \lim_{p\to a} p^2  +ap +a^2  = a^2 +a^2 + a^2 = 3a^2 .

Portanto , podemos dizer que \lim_{h\to 0} \frac{(a+h)^3 - a^3 }{h} = 3a^2 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?