• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mack-SP

Mack-SP

Mensagempor -Sarah- » Sáb Fev 23, 2013 18:56

(Mack-SP) Os valores de x para os quais log5^(x^2 - 3/2x) < 0, são:

a) -1/2<x<0 ou 3/2<x<2

b) 0<x<3/2

c) -1/2<x<2

d) x<0 ou x>3/2
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mack-SP

Mensagempor young_jedi » Seg Fev 25, 2013 21:27

\log 5^{x^2-\frac{3}{2}x}<0

x^2-\frac{3}{2}x.\log 5<0

x\left(x-\frac{3}{2}\right).log5<0

como log 5 é menor que zero então é um valor negativo portanto a expressão que esta multiplicando tem que ter valor possitivo, ou seja

x\left(x-\frac{3}{2}\right)>0

portanbto

x<0 ou x>3/2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Mack-SP

Mensagempor -Sarah- » Ter Fev 26, 2013 20:01

Muito obrigada! Mas, fiz de outro modo e não alcancei o mesmo resultado, não sei o que pode estar errado:

log5^(x^2-3/2x) <0
log5^(x^2-3/2x) < log5^1
x^2 -3/2x - 1 < 0
X1= 2
x2= -1/2

C.E
x^2-3/2>0
x(x-3/2)>0
X>0
X>3/2

Então {x E R I -1/2<x<0 ou 3/2 <x<2}
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Mack-SP

Mensagempor young_jedi » Ter Fev 26, 2013 20:14

na verdade voce tem que

\log5^{x^2-3/2x}<log1

\log5^{x^2-3/2x}<log5^0

dai

x^2-3/2x>0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Mack-SP

Mensagempor -Sarah- » Ter Fev 26, 2013 20:20

Oh God.. Ok Obrigada!
-Sarah-
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Fev 23, 2013 18:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.