• Anúncio Global
    Respostas
    Exibições
    Última mensagem

fração

fração

Mensagempor karenblond » Qui Jun 14, 2012 01:25

Um tanque de agua esta preenchido com 1/3 da sua capacidade. Se colocarmos mais 7 litros de agua ficara com 2/5 de sua capacidade. Qual a capacidade total desse tanque?

A) 90 litros

B) 105 litros

c) 120 litros

D) 135 Litros

Gente aluem pode me explicar eu não consigo entender fração....
karenblond
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Qua Mar 24, 2010 14:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: fração

Mensagempor Molina » Qui Jun 14, 2012 02:24

Boa noite, Karen.

Equacione este seu problema.

Para isso chame a capacidade total (que você quer descobrir) de x. Assim:

\frac{1}{3}x + 7 = \frac{2}{5}x


Qualquer dúvida avise! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}