• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função do 2° grau - o menor valor numa expressão

Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sex Mai 25, 2012 22:24

Considere x,y \in \Re tais que 3x - y = 20. O menor valor de \sqrt{x^2 + y^2} é:

a) 2\sqrt{5}

b) 2\sqrt{10}

c) 2\sqrt{15}

d) 4\sqrt{5}

e) 4\sqrt{10}

Resposta: Alternativa b)

* Bom, aqui está o que eu tentei fazer, mas obviamente não fechou com o resultado:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{144-160}{4};

yv = 4;

Raiz de 4 é 2. Não fecha com nenhuma das alternativas. Alguém pode me indicar o caminho certo? Qual seria o menor valor assumido pelo expressão na raiz?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sáb Mai 26, 2012 16:09

Ops, pessoal, foi mal. Cometi um ridículo equívoco com relação ao cálculo do yv na equação do 2° grau.

Simplifiquei a equação 10x^2-120x+400 para x^2-12x+40, e daí calculei o yv. Não sei porque fiz isso...

Me desculpem pela distração! :$

Resolução correta:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{14400-16000}{-40}

yv = 40;

Raiz de 40 é 2\sqrt{10} . Alternativa b)
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: