• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema parabola

Problema parabola

Mensagempor Pedroa » Ter Mai 08, 2012 13:50

O problema e feito a volta de uma ponte em arco que faz uma parabola de diametro de 200, altura ou h=80 dois pontos A e B com altura de 50
este e o enunciado : Considerando que o arco é parte de uma parábola, escolhe um referencial e, relativamente a esse referencial, determina:
1. a equação da parábola;
2. a distância entre os pilares A e B

eu sei que y=a(x-h)^2+k
eu faltei a imensas aulas e nao faço ideia como descobrir "a" , por isto quero dizer que nao sei descobrir os pontos x e y da equaçao, ja me disseram que e um ponto ocalhas mas isso deixa a questao como e que eu descubro o y desse ponto.
a distancias entre os pilares nao faço mesmo ideia nenhuma como fazer
Qualquer ajuda era apreciada, obrigado.
Pedroa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mai 08, 2012 13:16
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Ciencias
Andamento: cursando

Re: Problema parabola

Mensagempor joaofonseca » Ter Mai 08, 2012 17:25

No que respeita à equação da parabola, a questão é redundante.Pois existem infinitas equaçãoes que cumprem os parametros da pergunta.
Exemplo:

Imaginemos que uma das raízes é x=200 e a outra é x=0. Assim sabemos que o máximo da parabora é

f(100)=80.

Sabemos també que a(x-r_{1})(x-r_{2})=y. Então:

a(x-0)(x-200)=y \Leftrightarrow ax(x-200)=y \Leftrightarrow a(x^2-200x)=y

Agora substituimos x e y por um par ordenado conhecido:

a(100^2-200 \cdot 100)=80 \Leftrightarrow a(10000-20000)=80 \Leftrightarrow -10000a=80 \Leftrightarrow
a=-\frac{8}{1000}

Outro exemplo:

Agora o eixo de simetria é x=0. Temos então:

a(x+100)(x-100)=y \Leftrightarrow a(x^2-10000)=y

Substitui-se por um par conhecido.Atenção que neste exemplo temos f(0)=80.

a(0^2-10000)=80 \Leftrightarrow -10000a=80 \Leftrightarrow a=-\frac{8}{1000}

Na 2ª questão, e para facilitar, tomemos o último exemplo:
Seja A um ponto sobre o semi-eixo negativo das abcissas e B um ponto sobre o semi-eixo positivo das abcissas.

A equação da parabola será do tipo y=ax^2+cx+b.
O valor de a é -\frac{8}{1000}. O valor de b é 80. Então, substituindo:

-0,008 \cdot 0^2+c \cdot 0+80=80 \Leftrightarrow c=0

Logo a equação da parabola neste exemplo é:

y=-0,008x^2+80

Sabemos que f(A)=50. Então:
-0,008x^2+80=50 \Leftrightarrow -0,008x^2=-30 \Leftrightarrow x^2=3750 \Leftrightarrow x=\pm \sqrt{3750}

Nexte caso temos que A=-\sqrt{3750} e B=\sqrt{3750}. Logo a distancia entre A e B é 2 \cdot \sqrt{3750}

A Matemática não é díficil, mas dá trabalho!
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?