por Pedroa » Ter Mai 08, 2012 13:50
O problema e feito a volta de uma ponte em arco que faz uma parabola de diametro de 200, altura ou h=80 dois pontos A e B com altura de 50
este e o enunciado : Considerando que o arco é parte de uma parábola, escolhe um referencial e, relativamente a esse referencial, determina:
1. a equação da parábola;
2. a distância entre os pilares A e B
eu sei que y=a(x-h)^2+k
eu faltei a imensas aulas e nao faço ideia como descobrir "a" , por isto quero dizer que nao sei descobrir os pontos x e y da equaçao, ja me disseram que e um ponto ocalhas mas isso deixa a questao como e que eu descubro o y desse ponto.
a distancias entre os pilares nao faço mesmo ideia nenhuma como fazer
Qualquer ajuda era apreciada, obrigado.
-
Pedroa
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Mai 08, 2012 13:16
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Ciencias
- Andamento: cursando
por joaofonseca » Ter Mai 08, 2012 17:25
No que respeita à equação da parabola, a questão é redundante.Pois existem infinitas equaçãoes que cumprem os parametros da pergunta.
Exemplo:
Imaginemos que uma das raízes é

e a outra é

. Assim sabemos que o máximo da parabora é

.
Sabemos també que

. Então:
Agora substituimos
x e
y por um par ordenado conhecido:


Outro exemplo:
Agora o eixo de simetria é

. Temos então:

Substitui-se por um par conhecido.Atenção que neste exemplo temos

.

Na 2ª questão, e para facilitar, tomemos o último exemplo:
Seja
A um ponto sobre o semi-eixo negativo das abcissas e
B um ponto sobre o semi-eixo positivo das abcissas.
A equação da parabola será do tipo

.
O valor de
a é

. O valor de
b é 80. Então, substituindo:

Logo a equação da parabola neste exemplo é:

Sabemos que

. Então:

Nexte caso temos que

e

. Logo a distancia entre
A e
B é

A Matemática não é díficil, mas dá trabalho!
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema com parábola
por Eusouopapao » Ter Out 09, 2012 13:28
- 0 Respostas
- 785 Exibições
- Última mensagem por Eusouopapao

Ter Out 09, 2012 13:28
Equações
-
- Problema envolvendo parábola e perpendicularidade
por sauloandrade » Dom Out 28, 2012 21:08
- 2 Respostas
- 1096 Exibições
- Última mensagem por sauloandrade

Dom Out 28, 2012 22:16
Geometria Analítica
-
- [Parábola]Determinar vértice de parábola (Urgente!)
por migvas99 » Seg Out 08, 2012 14:37
- 1 Respostas
- 2725 Exibições
- Última mensagem por young_jedi

Seg Out 08, 2012 17:09
Funções
-
- [Parábola] Encontrando o ponto na parábola
por Ana_Rodrigues » Ter Nov 22, 2011 20:44
- 1 Respostas
- 4883 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 21:38
Geometria Analítica
-
- Parábola
por flavio2010 » Sáb Jul 17, 2010 19:11
- 1 Respostas
- 1929 Exibições
- Última mensagem por Tom

Sáb Jul 17, 2010 22:20
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.