por FelipeTURBO » Qui Abr 19, 2012 19:03
Uma caixa aberta deve ser construída de uma folha retangular de metal de 8 por 15 centímetros
cortando fora quadrados com lados de comprimento x de cada canto, dobrando os lados.
Expresse o volume V da caixa em função de x. Quais os valores que poderão ser assumidos pela
variável independente?
-
FelipeTURBO
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Mar 23, 2012 23:08
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por Guill » Sex Abr 20, 2012 16:15
Se a folha possui dimensões 8 por 15, os quadrados cortados diminuen as dimensões dos lados em 2x cada. A base possui dimensões 8 - 2x e 15 - 2x, além da caixa possuir altura x:
V = x(8 - 2x)(15 - 2x)
V = (2x² - 8x)(2x - 15)
V = 4x³ - 46x² + 120x
Sabe-se que não existe altura negativa nem volume negativo, portanto, já sabemos que os valores de x precisam ser maiores do que 0. Basta calcular os valores de x onde o volume é positivo:
As raízes são x = 0, x = 4 e x = 7,5. Como os valores de x são sempre positivos em x > 0, teremos que analizar a função f(x) = 4x² - 46x + 120. Como sabemos as raízes:
![S = \left[x\in{R}^{+} |4 > x > 7,5 \right] S = \left[x\in{R}^{+} |4 > x > 7,5 \right]](/latexrender/pictures/ee4f4d2a587255f5c3c0a54df5e348c4.png)
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Gráfico de função trigonométrica-Função seno
por lucassouza » Dom Mai 31, 2015 19:15
- 0 Respostas
- 1803 Exibições
- Última mensagem por lucassouza

Dom Mai 31, 2015 19:15
Trigonometria
-
- grafico de função
por Amparo » Dom Mar 09, 2008 20:22
- 1 Respostas
- 2487 Exibições
- Última mensagem por admin

Qui Mar 13, 2008 12:56
Funções
-
- Grafico de uma função
por DSR » Qui Ago 27, 2009 21:36
- 3 Respostas
- 2650 Exibições
- Última mensagem por Elcioschin

Sáb Ago 29, 2009 01:05
Álgebra Elementar
-
- Função e gráfico
por rafacosme » Qua Jun 16, 2010 21:31
- 3 Respostas
- 2086 Exibições
- Última mensagem por MarceloFantini

Qui Jun 17, 2010 02:03
Funções
-
- grafico da funçao
por maria cleide » Qui Mai 12, 2011 17:14
- 1 Respostas
- 1350 Exibições
- Última mensagem por carlosalesouza

Qui Mai 12, 2011 17:23
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.