• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função em biologia

Função em biologia

Mensagempor Brunaaline » Sex Abr 13, 2012 11:05

A concentração de bactérias nun sistema de agua publica tem aumentado,o que ocasionou um tratamento com agentes anti-bacterianos. Bioquimicos responsaveia pelo tratamento da agua estimam que N(t),o numero de bacterias por cm³, pode ser descrito pela equação N(t) = 40t²-320t+1000 onde t é dias de tratamento.
A agua é considerada impropria para beber quando a concentração excede 720 bacterias por cm³. Quanto tempo apos o inicio do tratamento a agua poderá ser bebida novamente??
Brunaaline
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 13, 2012 10:46
Formação Escolar: GRADUAÇÃO
Área/Curso: biologia
Andamento: cursando

Re: Função em biologia

Mensagempor DanielFerreira » Sex Abr 13, 2012 22:47

Brunaaline escreveu:A concentração de bactérias nun sistema de agua publica tem aumentado,o que ocasionou um tratamento com agentes anti-bacterianos. Bioquimicos responsáveis pelo tratamento da agua estimam que N(t),o numero de bacterias por cm³, pode ser descrito pela equação N(t) = 40t²-320t+1000 onde t é dias de tratamento.
A agua é considerada impropria para beber quando a concentração excede 720 bacterias por cm³. Quanto tempo apos o inicio do tratamento a agua poderá ser bebida novamente??

N(t) \leq 720

N(t) = 40t^2 - 320t + 1000

40t^2 - 320t + 1000 \leq 720

40t^2 - 320t + 280 \leq 0

t^2 - 8t + 7 \leq 0

(t - 1)(t - 7) \leq 0

1 \leq t \leq 7
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}