• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função modular] Dúvida com relação a raízes

[Função modular] Dúvida com relação a raízes

Mensagempor exburro » Sáb Mar 31, 2012 01:23

Olá, eu era bem idiota no colegial e entrei na engenharia, tenho umas dúvidas bem retardadas e aqui vai uma.
Estou tentando resolver esta função
f(x)=x²-|3x+4|

O que eu fiz até agora foi:
1. p/ (3x+4)>=0 x>=-4/3
x²-3x+4=0

2. p/ (3x+4)<0 x<-4/3
x²+3x-4


Agora eu deveria fazer o gráfico das duas mas tenho a seguinte dúvida... Como vou calcular as raízes se a função 1. terá um delta negativo?


Obrigado pessoal, estou me empenhando e descobrindo a cada dia o quão bom é estudar. Até mais.
exburro
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mar 31, 2012 01:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Automação
Andamento: cursando

Re: [Função modular] Dúvida com relação a raízes

Mensagempor LuizAquino » Sex Abr 06, 2012 12:40

exburro escreveu:Estou tentando resolver esta função
f(x)=x²-|3x+4|


Não faz sentido dizer que você está "tentando resolver esta função".

O que você poderia dizer é que está tentando esboçar o gráfico da função.

exburro escreveu:1. p/ (3x+4)>=0 x>=-4/3
x²-3x+4=0


Errado. Para x >= -4/3 temos que |3x + 4| = 3x + 4. Sendo assim, temos que:
x² - |3x + 4| = x² - (3x + 4) = x² - 3x - 4.

Em resumo: para x >= -4/3 a expressão para a função é x² - 3x - 4.

exburro escreveu:2. p/ (3x+4)<0 x<-4/3
x²+3x-4


Errado. Para x < -4/3 temos que |3x + 4| = -(3x + 4). Sendo assim, temos que:
x² - |3x + 4| = x² - [-(3x + 4)] = x² + 3x + 4.

Em resumo: para x < -4/3 a expressão para a função é x² + 3x + 4.

Juntando o que foi dito nas partes 1. e 2., temos que a função pode ser reescrita como:

f(x) = \begin{cases}x^2 - 3x - 4, \textrm{ se } x \geq -\frac{4}{3} \\ x^2 + 3x + 4, \textrm{ se } x < -\frac{4}{3} \end{cases}

exburro escreveu:Agora eu deveria fazer o gráfico das duas mas tenho a seguinte dúvida... Como vou calcular as raízes se a função 1. terá um delta negativo?


Quando uma função polinomial do segundo grau tem discriminante (delta) negativo, ela não tem raízes reais e portanto o seu gráfico não toca o eixo x. O seu gráfico ficará totalmente acima ou totalmente abaixo do eixo x, sendo que ele apenas tocará no eixo y.

Para revisar como construir o gráfico de uma função polinomial do segundo grau, eu recomendo que você assista a videoaula "Matemática - Aula 5 - Função do Segundo Grau". Ela está disponível no canal do Nerckie:

http://www.youtube.com/nerckie

Além disso, vale lembar que a função do exercício é dividida em duas partes. Para cada parte teremos um "pedaço" de parábola. Ou seja, cada parte será um "pedaço" do gráfico de uma função polinomial do segundo grau.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}