• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas de equações] Como se chegar a estas constantes?

[Sistemas de equações] Como se chegar a estas constantes?

Mensagempor Wilson de Andrade » Dom Mar 11, 2012 16:08

Uma curva de deslocamento é formada por duas parábolas f(x) e g(x) com vértices \left(0,0 \right) e \left(\beta,h \right), respectivamente, concordantes no ponto médio x=\beta/2.
Sendo h o deslocamento máximo em y e \beta a posição angular máxima do came no eixo x (uma volta completa, por exemplo \left(\beta=2\pi \right)).

Há duas equações do movimento:
No trecho 0\leq x \leq\beta/2 (f(x));
e no trecho \beta/2\leq x \leq\beta (g(x)).

No trecho 0\leq x \leq\beta/2\Rightarrowf(x)=a{x}^{2} (1)
a=\frac{y}{{x}^{2}}
No instante x=\frac{\beta}{2} \Rightarrow y=\frac{h}{2}

Portanto: a=\frac{2h}{{\beta}^{2}} (2)

Substituindo (2) em (1): f(x)=\frac{2h}{{\beta}^{2}}*{x}^{2}

Derivando obtemos a equação da velocidade:f'(x)=\frac{4h}{{\beta}^{2}}*x
No instante x=\frac{\beta}{2} a velocidade será máxima, portanto:

Já no trecho \beta/2\leq x \leq\beta\Rightarrow g(x)={ax}^{2}+bx+c
Para a equação da velocidade: g'(x)=2ax+b

No instante x=\beta \Rightarrow y=h, então: h={ax}^{2}+bx+c (3).
Ao mesmo tempo que no instante x=\beta \Rightarrow g'(x)=0
Portanto: 0=2ax+b(4)

No instante x=\frac{\beta}{2} a velocidade também será máxima, portanto:
Ou seja, \frac{2h}{\beta}=2ax+b(5)

Resolvendo simultaneamente as equações (3), (4) e (5), o autor obtem os seguintes valores para as constantes a, b e c:
a=-\frac{2h}{{\beta}^{2}}

b=\frac{4h}{\beta}

c=-h

Esta é minha dificuldade, entender como o autor resolveu o sistema para encontrar a,b e c, obtendo as equações definitivas:
g(x)=h\left[1-2{\left(1-\frac{x}{\beta} \right)}^{2} \right]

g'(x)=\frac{4h}{\beta}\left(1-\frac{x}{\beta} \right)

Obrigado.
Wilson de Andrade
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 11, 2012 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia em Processos de produção
Andamento: formado

Re: [Sistemas de equações] Como se chegar a estas constantes

Mensagempor Wilson de Andrade » Seg Mar 12, 2012 00:13

Enquanto postava esta dúvida fui organizando meu raciocínio, e acho que consegui resolver uma parte:

Igualando a equação (5) a zero, \frac{2h}{\beta}=2ax+b, indicando que no instante x=\frac{\beta}{2}:

2a\left(\frac{\beta}{2} \right)+b-\frac{2h}{\beta}=0\Rightarrow\frac{2a{\beta}^{2}+2\beta b-4h}{2\beta}=0

ou \frac{2\beta\left(a\beta+b \right)-4h}{2\beta}=0

a\beta+b=\frac{4h}{2\beta}. Isolando b: b=\frac{2h}{\beta}-a\beta.


Substiuindo b na equação (4), que se trata da derivada de g(x) no instante x=\beta\Rightarrow g'(x)=0:

2ax+b=0

\Rightarrow b=-2a\beta

\frac{2h}{\beta}-a\beta=-2a\beta

\frac{2h}{\beta}=-2a\beta+a\beta\Rightarrow \frac{2h}{\beta}=-a\beta

Portanto, a=-\frac{2h}{{\beta}^{2}}.

Substituindo a no valor de b:

b=\frac{2h}{\beta}-a\beta

\Rightarrow b=\frac{2h}{\beta}-\left(-\frac{2h}{{\beta}^{2}} \right)\beta

\Rightarrow b=\frac{2h}{\beta}+\frac{2h}{\beta}

Portanto, b=\frac{4h}{\beta}

Substituindo a e b na equação (3) para obter c:

h={ax}^{2}+bx+c , no instante x=\beta

h={a\beta}^{2}+b\beta+c

Isolando c: c=h-{a\beta}^{2}-b\beta

c=h-{\left( -\frac{2h}{{\beta}^{2}} \right)\beta}^{2}-\left(\frac{4h}{\beta} \right)\beta

\Rightarrow c=h+2h-4h

Portanto, c=-h.

Acho que é isso. Agora, fatorar a equação definitiva g(x)=-\frac{2h{x}^{2}}{{\beta}^{2}}+\frac{4hx}{\beta}-h

para ela ficar g(x)=h\left[1-2{\left(1-\frac{x}{\beta} \right)}^{2} \right] eu não sei fazer, sou péssimo em fatoração...
Valeu.
Wilson de Andrade
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 11, 2012 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia em Processos de produção
Andamento: formado

Re: [Sistemas de equações] Como se chegar a estas constantes

Mensagempor LuizAquino » Seg Mar 12, 2012 01:23

Wilson de Andrade escreveu:Agora, fatorar a equação definitiva g(x)=-\frac{2h{x}^{2}}{{\beta}^{2}}+\frac{4hx}{\beta}-h

para ela ficar g(x)=h\left[1-2{\left(1-\frac{x}{\beta} \right)}^{2} \right] eu não sei fazer, sou péssimo em fatoração...


Note que:

g(x)=-\dfrac{2h{x}^{2}}{{\beta}^{2}}+\dfrac{4hx}{\beta}-h

g(x)=h\left(-\dfrac{2{x}^{2}}{{\beta}^{2}}+\dfrac{4x}{\beta}-1\right)

g(x)=h\left[-2\left(\dfrac{{x}^{2}}{{\beta}^{2}}-\dfrac{2x}{\beta}\right)-1\right]

g(x)=h\left\{-2\left[\left(1 - \dfrac{x}{\beta}\right)^2 - 1\right]-1\right\}

g(x)=h\left[-2\left(1 - \dfrac{x}{\beta}\right)^2   + 2 - 1\right]

g(x)=h\left[-2\left(1 - \dfrac{x}{\beta}\right)^2  +  1\right]

g(x)=h\left[1 - 2\left(1 - \dfrac{x}{\beta}\right)^2\right]
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}